Tensor denoising and completion based on ordinal observations

Chanwoo Lee
Joint work with Miaoyan Wang

Department of Statistics
University of Wisconsin－Madison

IFDS，March 9， 2020

Introduction: what is a tensor?

- Tensors are generalizations of vectors and matrices:

Scalar component Order-O

Vector Order-1

Matrix
Order-2

Tensor Order-3

- We focus on tensors of order 3 or greater, also called higher-order tensors.
- Denote an order- $K\left(d_{1}, \cdots, d_{K}\right)$ dimensional tensor as $\mathcal{Y}=\llbracket y_{\omega} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ where $\omega \in\left[d_{1}\right] \times \cdots \times\left[d_{K}\right]$.

Introduction: Tucker decomposition

- Tucker decomposition
- Generalization of matrix SVD to higher orders.
- $\mathcal{X}=\mathcal{C} \times{ }_{1} \boldsymbol{M}_{1} \times_{2} \boldsymbol{M}_{2} \times_{3} \boldsymbol{M}_{3}$.
- Tucker rank of an order-3 tensor is defined as

$$
r(\mathcal{X})=\left(r_{1}, r_{2}, r_{3}\right)
$$

- Degree of freedom (the number of parameters) is

$$
\sum_{k}\left(d_{k}-r_{k}\right) r_{k}+\prod_{k} r_{k} \approx \mathcal{O}\left(\sum_{k} d_{k}\right) \text { when } r_{k}=\mathcal{O}(1)
$$

Introduction: tensor data in applications

- Tensor in genomics.

Gene Expression Data

- Tensor in neuroimaging.

Patient 1
Patient 2

Brain Imaging Data

Introduction: ordinal tensor data in applications

- Tensor in recommendation system (Baltrunas et al., 2011).
- Each entry $y_{\omega} \in\{1,2,3,4,5\}$

- Tensor in networks (Human Connectome Project (HCP)).
- Each entry $y_{\omega} \in\{$ high, moderate, low $\}$.

Tensor-based learning is an active but challenging field

- Tensor decomposition (Anandkumar et al, JMLR'14; Wang and Song, AISTATS'17; Han and Zhang, JASA'19).
- Tensor regression (Zhou et al JASA'13; Chen, Raskutti, and Yuan, JMLR'20; Xu, Hu and Wang'19).
- Tensor denoising (Wang and Li'18; Hong, Kolda, and Duersch, SIAM AR'19; Zeng and Wang, NeurlIPS'19).
- Tensor completion (Montanari and Sun, CPAM'16; Zhang AOS'19; Ghadermarzy, Plan and Yilmaz, I\&A'19).

No existing method is able to analyze oridnal-valued tensors.

Motivating problems

- How can we fill the missing ordinal values from the available tensor data?
- How many ordinal samples do we need to complete the tensor?

- This talk is based on: L. and M. Wang. Tensor denoising and completion based on ordinal observations. arXiv:2002.06524, 2020.

Probabilistic model

- Goal: learn a probabilistic tensor from multi-way ordinal observations.
- Two key properties needed for a reasonable model.

1. The model should be invariant under a reversal of categories

$$
\text { like } \prec \text { neutral } \prec \text { dislike } \Longleftrightarrow \text { like } \succ \text { neutral } \succ \text { dislike } .
$$

2. The parameter interpretations should be consistent under merging or splitting of contiguous categories.

- Continuous tensor model lacks the first property.
- Binary tensor model lacks the second property.

Probabilistic model

Proposal: a cumulative link model.

- $[L]=\{1,2, \cdots, L\}$ denotes the ordinal level.
- Let $\mathcal{Y}=\llbracket y_{\omega} \rrbracket \in[L]^{d_{1} \times \cdots \times d_{K}}$ be an ordinal tensor. The entries y_{ω} are independently distributed with cumulative probabilities:

$$
\begin{equation*}
\mathbb{P}\left(y_{\omega} \leq \ell \mid \boldsymbol{b}, \Theta\right)=f\left(b_{\ell}-\theta_{\omega}\right), \quad \text { for all } \ell \in[L-1] . \tag{1}
\end{equation*}
$$

ex) $f(x)=\frac{e^{x}}{1+e^{x}}$ is a logistic link.

- The additive, cumulative model enjoys two key properties for ordinal tensor data.
- If f is a cumulative function,

$$
\mathbb{P}\left(y_{\omega}=\ell\right)=f\left(b_{\ell}-\theta_{\omega}\right)-f\left(b_{\ell-1}-\theta_{\omega}\right)=\mathbb{P}\left(b_{\ell-1}<y_{\omega}^{*} \leq b_{\ell}\right),
$$

where $\epsilon_{\omega} \stackrel{i . i . d}{\sim} f$ and $y_{\omega}^{*}=\theta_{\omega}+\epsilon_{\omega}$.

Latent variable interpretation

- We can interpret the ordinal tensor model (1) as an L-level quantization model.

$+$

$\underbrace{\mathcal{E}}_{\text {i.i.d. noise }}$

$\underbrace{\mathcal{Y}^{*}}$
latent continuous-valued tensor
- Given intervals from the cut-off points vector \boldsymbol{b}.

\mathcal{Y}^{*}

\mathcal{Y}
$y_{\omega}= \begin{cases}1, & \text { if } y_{\omega}^{*} \in\left(-\infty, b_{1}\right], \\ 2, & \text { if } y_{\omega}^{*} \in\left(b_{1}, b_{2}\right], \\ \vdots & \vdots \\ L, & \text { if } y_{\omega}^{*} \in\left(b_{L-1}, \infty\right),\end{cases}$

Probabilistic model: assumptions on f

- The link function is assumed to satisfy:
- $f(\theta)$ is strictly increasing and twice-differentiable in θ.
- $f^{\prime}(\theta)$ is strictly log-concave and symmetric with respect to $\theta=0$.
- Many cumulative functions satisfy the above two assumptions.

Probabilistic model: assumptions on Θ

- The parameter Θ admits the Tucker decomposition:

$$
\Theta=\mathcal{C} \times_{1} \boldsymbol{M}_{1} \times_{1} \cdots \times_{K} \boldsymbol{M}_{K},
$$

where $\mathcal{C} \in \mathbb{R}^{r_{1} \times \cdots r_{K}}$ is a core tensor, $M_{k} \in \mathbb{R}^{d_{k} \times r_{k}}$ are factor matrices.

- Entries of Θ are uniformly bounded in magnitude by a constant $\alpha \in \mathbb{R}_{+}$.

Rank constrained M-estimation

- Let $\Omega \subset\left[d_{1}\right] \times \cdots \times\left[d_{K}\right]$ denote the set of observed indices.
Ω could be the full set or incomplete set (for completion).
- The log-likelihood associated with the observations is

$$
\mathcal{L}_{\mathcal{Y}, \Omega}(\Theta, \boldsymbol{b})=\sum_{\omega \in \Omega} \sum_{\ell \in[L]}\left\{\mathbb{1}_{\left\{y_{\omega}=\ell\right\}} \log \left[f\left(b_{\ell}-\theta_{\omega}\right)-f\left(b_{\ell-1}-\theta_{\omega}\right)\right]\right\} .
$$

- We propose a rank-constrained maximum likelihood estimation for Θ.

$$
\begin{gathered}
(\hat{\Theta}, \hat{\boldsymbol{b}})=\underset{\Theta \in \mathcal{P}, \boldsymbol{b} \in \mathcal{B}}{\arg \max } \mathcal{L}_{\mathcal{Y}, \Omega}(\Theta, \boldsymbol{b}) \quad \text { where, } \\
\mathcal{P}=\{\Theta \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}: \operatorname{rank}(\mathcal{P}) \leq \boldsymbol{r},\|\Theta\|_{\infty} \leq \alpha, \underbrace{\langle\Theta, \mathcal{J}\rangle=0}_{\text {identifiability condition }}\}, \\
\mathcal{B}=\left\{\boldsymbol{b} \in \mathbb{R}^{L-1}:\|\boldsymbol{b}\|_{\infty} \leq \beta, \min _{\ell}\left(b_{\ell}-b_{\ell-1}\right) \geq \Delta\right\} .
\end{gathered}
$$

Here, $\mathcal{J}=\llbracket 1 \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ denotes a tensor of all ones.

Algorithm

- The rank \boldsymbol{r} is unknown \Longrightarrow Bayesian information criterion (BIC).
- Non-convex problem \Longrightarrow Alternating optimization approach.
- Let $\mathcal{L}_{\mathcal{Y}, \Omega}\left(\mathcal{C}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{K}, \boldsymbol{b}\right)=\mathcal{L}_{\mathcal{Y}, \Omega}(\Theta, \boldsymbol{b})$.

Algorithm 1: Alternating optimization
Result: Estimated Θ, together with core tensor and factor matrices
Random initialization;
Repeat until converge;

$$
\begin{aligned}
& \mathcal{C}^{(n)}=\arg \max _{\mathcal{C}} \mathcal{L}_{\mathcal{Y}, \Omega}\left(\mathcal{C}, \mathcal{M}_{1}^{(n-1)}, \cdots, \mathcal{M}_{k}^{(n-1)}, \boldsymbol{b}^{(n-1)}\right) \\
& \mathcal{M}_{1}^{(n)}=\arg \max _{\mathcal{M}_{1}} \mathcal{L}_{\mathcal{Y}, \Omega}\left(\mathcal{C}^{(n)}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{k}^{(n-1)}, \boldsymbol{b}^{(n-1)}\right) . \\
& \quad \vdots \\
& \mathcal{M}_{K}^{(n)}=\arg \max _{\mathcal{M}_{K}} \mathcal{L}_{\mathcal{Y}, \Omega}\left(\mathcal{C}^{(n)}, \mathcal{M}_{1}^{(n)}, \cdots, \mathcal{M}_{k}, \boldsymbol{b}^{(n-1)}\right) \\
& \boldsymbol{b}^{(n)}=\arg \max _{\boldsymbol{b}} \mathcal{L}_{\mathcal{Y}, \Omega}\left(\mathcal{C}^{(n)}, \mathcal{M}_{1}^{(n)}, \cdots, \mathcal{M}_{k}^{(n)}, \boldsymbol{b}\right) .
\end{aligned}
$$

end

- There is no guarantee on global optimality.

Algorithm

- However, our theoretical results hold as long as $\mathcal{L}_{\mathcal{Y}, \Omega}(\hat{\Theta}) \geq \mathcal{L}_{\mathcal{Y}, \Omega}\left(\Theta^{\text {true }}\right)$.
- The algorithm performs well in simulations and data applications.

Theoretical results: tensor denoising

- Tensor denoising:
- (Q1) How accurately can we estimate the latent signal tensor Θ from the ordinal observation \mathcal{Y} ?

Theoretical results: tensor denoising

- Tensor denoising:
- (Q1) How accurately can we estimate the latent signal tensor Θ from the ordinal observation \mathcal{Y} ?
$\triangleright(\mathrm{A} 1)$ Let us define $\operatorname{MSE}\left(\hat{\Theta}, \Theta^{\text {true }}\right)=\frac{1}{\prod_{k} d_{k}}\left\|\hat{\Theta}-\Theta^{\text {true }}\right\|_{F}^{2}$.

Statistical convergence (L. and Wang, 2020)

With very high probability, our estimator $\hat{\Theta}$ satisfies

$$
\operatorname{MSE}\left(\hat{\Theta}, \Theta^{\text {true }}\right) \leq \min \left(4 \alpha^{2}, c_{1} r_{\max }^{K-1} \frac{\sum_{k} d_{k}}{\prod_{k} d_{k}}\right)
$$

where $c_{1}=c(f, K)>0$ is a constant.

- We also have general results for incomplete data, or unknown bases.

[^0]
Theoretical results: tensor denoising

- Tensor denoising:
- (Q1') Is this bound optimal?

Theoretical results: tensor denoising

- Tensor denoising:
- (Q1') Is this bound optimal?
- (A1')

Minimax lower bound (L. and Wang, 2020)

Under some mild technical conditions,

$$
\inf _{\hat{\Theta} \in \mathcal{P}} \sup _{\Theta^{\text {true }} \in \mathcal{P}} \mathbb{P}\left\{\operatorname{MSE}\left(\hat{\Theta}, \Theta^{\text {true }}\right) \geq c \min \left(\alpha^{2}, C r_{\max } \frac{d_{\max }}{\prod_{k} d_{k}}\right)\right\} \geq \frac{1}{8}
$$

where $C=C(\alpha, L, f, \boldsymbol{b})>0$ and $c>0$ are constants independent of tensor dimension and the rank.

- So our estimation bound is rate-optimal.

Theoretical results: tensor completion

- Tensor completion:
- (Q2) How many sampled entries do we need to consistently recover Θ ?

Theoretical results: tensor completion

- Tensor completion:

- (Q2) How many sampled entries do we need to consistently recover Θ ?
- (A2) Let us define $\|\Theta-\hat{\Theta}\|_{F, \Pi}^{2}=\sum_{\omega \in\left[d_{1}\right] \times \cdots \times\left[d_{K}\right]} \pi_{\omega}\left(\Theta_{\omega}-\hat{\Theta}_{\omega}\right)^{2}$.

Sample complexity (L. and Wang, 2020)

Let $\left\{y_{\omega}\right\}_{\omega \in \Omega}$ be the ordinal observation, where Ω is chosen at random with replacement according to a probability distribution Π. Then, with very high probability,

$$
\|\Theta-\hat{\Theta}\|_{F, \Pi}^{2} \rightarrow 0, \quad \text { as } \quad \frac{|\Omega|}{\sum_{k} d_{k}} \rightarrow \infty .
$$

- We allow both uniform and non-uniform sampling.
- The number of free parameters is roughly on the order of $\sum_{k} d_{k}$.
- The sample complexity $|\Omega| \gg \mathcal{O}\left(\sum_{k} d_{k}\right)$ is almost optimal.

Theoretical results: summary

- Let $\mathcal{Y} \in \mathbb{R}^{d \times \cdots \times d}$ be an order- K, L-level ordinal tensor.

	Bhaskar (2016)	Ghadermarzy et al. (2018)	This paper
Higher-order tensors $(K \geq 3)$	\boldsymbol{x}	\checkmark	\checkmark
Multi-level categories $(L \geq 3)$	\checkmark	\boldsymbol{x}	\checkmark
Error rate for tensor denoising	d^{-1} for $K=2$	$d^{-(K-1) / 2}$	$d^{-(K-1)}$
Optimality guarantee	unkonwn	\boldsymbol{X}	$\boldsymbol{\checkmark}$
Sample complexity for completion	d^{K}	$K d$	$K d$

Simulations

- The decay in the error appears to behave on the order of d^{-2}.
- A larger estimation error is observed when the signal is too small or large.
- There is a big improvement from $L=2$ to $L \geq 3$.

Figure: the relative MSE $=\left\|\hat{\Theta}-\Theta^{\text {true }}\right\|_{F} /\left\|\Theta^{\text {true }}\right\|_{F}$ for better visualization.

Simulations

- We compare our method to other 4 alternatives.
- Our method outperforms across a range of missingness and ordinal levels.

Data application: Human Connectome Project (HCP)

- An ordinal tensor consisting of structural connectivities among 68 brain nodes for 136 individuals (Van Essen et al., 2013).
- Each entry $y_{\omega} \in\{$ high, moderate, low $\}$.

Data application: Human Connectome Project (HCP)

- The BIC suggests $\boldsymbol{r}=(23,23,8)$.
- The clustering based on the estimated $\hat{\Theta}$ identifies 11 (3+8) clusters among 68 brain nodes. \#dusteing

Data application: Human Connectome Project (HCP)

- The BIC suggests $\boldsymbol{r}=(23,23,8)$.
- The clustering based on the estimated $\hat{\Theta}$ identifies $11(3+8)$ clusters among 68 brain nodes.

```
* clustering
```

- The top three clusters capture the global separation among brain nodes.

Data application: Human Connectome Project (HCP)

- The BIC suggests $\boldsymbol{r}=(23,23,8)$.
- The clustering based on the estimated $\hat{\Theta}$ identifies $11(3+8)$ clusters among 68 brain nodes. \# dustaing
- The top three clusters capture the global separation among brain nodes.

- The small clusters represent local regions driving by similar nodes.

Data application: InCarMusic

- An tensor recording the ratings from 42 users to 139 songs on 26 contexts (Baltrunas et al., 2011).
- Each entry is a rating on a scale of 1 to $5\left(y_{\omega} \in\{1,2,3,4,5\}\right)$.

(a) Tracks Proposed (b) Rating a Track (c) Editing the User (d) Configuring the to Play

Profile
Recommender

Data application: HCP, InCarMusic

- Our method achieves lower prediction error than others.

Method		Ordinal-T (ours)	Continuous-T	1bit-sign-T
HCP	MAD	$0.1607(0.005)$	$0.2530(0.0002)$	$0.3566(0.0010)$
	MCR	$0.1606(0.005)$	$0.1599(0.0002)$	$0.1563(0.0010)$
InCarMusic	MAD	$1.37(0.039)$	$2.39(0.152)$	$0.59(0.003)$
	MCR	$0.59(0.009)$	$0.94(0.027)$	$0.81(0.005)$

Table: Comparison of prediction error based on cross-validation (10 repetitions, 5 foldes). Standard errors are reported in parentheses. MAD: mean absolute error; MCR: misclassification error.

Summary

- We propose a cumulative probabilistic model for ordinal tensor observations.
- The model achieves optimal convergence rate and nearly optimal sample complexity.
- The model has good interpretation and prediction performance in HCP and $\operatorname{InCarMusic}$ application.
- Future work:
- Analysis of algorithmic error (global vs local).
- Robustness of the model.
- Thank you!
- L. and M. Wang. Tensor denoising and completion based on ordinal observations. arXiv:2002.06524, 2020.

Unknown b case

- We make the following assumptions about the link function.

Assumption 1

The link function $f: \mathbb{R} \mapsto[0,1]$ satisfies the following properties:

1. $f(z)$ is twice-differentiable and strictly increasing in z.
2. $\dot{f}(z)$ is strictly log-concave and symmetric with respect to $z=0$.

- We define the following constants that will be used in the theory:

$$
\begin{aligned}
& C_{\alpha, \beta, \Delta}=\max _{|z| \leq \alpha+\beta} \max _{\substack{z^{\prime} \leq z-\Delta \\
z^{\prime \prime} \geq z+\Delta}} \max \left\{\frac{\dot{f}(z)}{f(z)-f\left(z^{\prime}\right)}, \frac{\dot{f}(z)}{f\left(z^{\prime \prime}\right)-f(z)}\right\} \\
& D_{\alpha, \beta, \Delta}=\max _{|z| \leq \alpha+\beta} \max _{\substack{z^{\prime} \leq z-\Delta \\
z^{\prime \prime} \geq z+\Delta}} \max \left\{-\frac{\partial}{\partial z}\left(\frac{\dot{f}(z)}{f(z)-f\left(z^{\prime}\right)}\right), \frac{\partial}{\partial z}\left(\frac{\dot{f}(z)}{f\left(z^{\prime \prime}\right)-f(z)}\right)\right\}
\end{aligned}
$$

$$
A_{\alpha, \beta, \Delta}=\min _{|z| \leq \alpha+\beta} \min _{z^{\prime} \leq z-\Delta}\left(f(z)-f\left(z^{\prime}\right)\right)
$$

Unknown b case

- We have the following theorem corresponding to Theorem 1 in known \boldsymbol{b} case.

Theorem 1 (Statistical convergence with unknown b)

With very high probability,

$$
\operatorname{MSE}\left(\hat{\Theta}, \Theta^{\text {true }}\right) \leq \min \left(4 \alpha^{2}, c_{1} r_{\max }^{K-1} \frac{L-1+\sum_{k} d_{k}}{(L-1) \prod_{k} d_{k}}\right)
$$

and

$$
\operatorname{MSE}\left(\hat{\boldsymbol{b}}, \boldsymbol{b}^{\text {true }}\right) \leq \min \left(4 \beta^{2}, c_{1} r_{\max }^{K-1} \frac{L-1+\sum_{k} d_{k}}{(L-1) \prod_{k} d_{K}}\right)
$$

where $c_{1}, C_{\alpha, \beta, \Delta}, D_{\alpha, \beta, \Delta}$ are positive constants independent of the tensor dimension, rank, and number of ordinal levels.

Clustering method

- In matrices case,

1. Perform singular value decomposition,

$$
X=U \Sigma V^{T}
$$

where Σ is a diagonal matrix and U, V are factor matrices with orthogonal columns.
2. Take each column of V as a principal axis and each row in $U \Sigma$ as principal component.
3. A subsequent multivariate clustering method (such as K-means) is then applied to the m rows of $U \Sigma$.

Clustgering method

- In tensors case,

1. Perform Tucker decompostion,

$$
\begin{equation*}
\hat{\Theta}=\hat{\mathcal{C}} \times_{1} \hat{\boldsymbol{M}}_{1} \times_{2} \cdots \times_{K} \hat{\boldsymbol{M}}_{K}, \tag{2}
\end{equation*}
$$

2. The mode- k matricization of (2) gives

$$
\hat{\Theta}_{(k)}=\hat{\boldsymbol{M}}_{k} \hat{\mathcal{C}}_{(k)}\left(\hat{\boldsymbol{M}}_{K} \otimes \cdots \otimes \hat{\boldsymbol{M}}_{1}\right),
$$

3. Take each column in $\left(\hat{\boldsymbol{M}}_{K} \otimes \cdots \otimes \hat{\boldsymbol{M}}_{1}\right)$ as principal axis and each row in $\hat{\boldsymbol{M}}_{k} \hat{\mathcal{C}}_{(k)}$ as principal component.
4. A subsequent multivariate clustering method (such as K-means) is then applied to the d_{k} rows of the matrix $\hat{\boldsymbol{M}}_{k} \hat{\mathcal{C}}_{(k)}$.

References I

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lüke, K.-H., and Schwaiger, R. (2011). Incarmusic: Context-aware music recommendations in a car. In International Conference on Electronic Commerce and Web Technologies, pages 89-100. Springer.

Bhaskar, S. A. (2016). Probabilistic low-rank matrix completion from quantized measurements. The Journal of Machine Learning Research, 17(1):2131-2164.

Ghadermarzy, N., Plan, Y., and Yilmaz, O. (2018). Learning tensors from partial binary measurements. IEEE Transactions on Signal Processing, 67(1):29-40.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., Consortium, W.-M. H., et al. (2013). The WU-Minn human connectome project: an overview. Neuroimage, 80:62-79.

[^0]: - unknown b case

