Estimating smooth tensors with unknown permutations

Chanwoo Lee ${ }^{1}$ Miaoyan Wang ${ }^{1}$

${ }^{1}$ Department of Statistics, University of Wisconsin-Madison

Main Problem

$$
\begin{aligned}
& \text { We consider permuted tensor model, } \\
& \qquad \mathcal{Y}=\Theta \circ \sigma+\mathcal{E},
\end{aligned}
$$

where $\mathcal{Y} \in \mathbb{R}^{d \times \cdots \times d}$ is an observed data tensor, Θ is an unknown smooth signal tensor, σ is an unknown permutation, and $\mathcal{E} \in \mathbb{R}^{d \times \cdots \times d}$ is a noise tensor consisting of zero-mean sub-Gaussian entries.

Main problem: how to estimate $\Theta \circ \sigma$ from the observed data tensor \mathcal{Y} ?

Limitations of low-rank assumption

Low-rank models assume

$$
\Theta \circ \sigma=\sum_{\ell=1}^{r} \lambda_{\ell} \boldsymbol{a}_{1}^{(\ell)} \otimes \cdots \otimes \boldsymbol{a}_{m}^{(\ell)}
$$

where λ_{ℓ} is a scalar and $\boldsymbol{a}_{k}^{(\ell)} \in \mathbb{R}^{d}$ for all $(k, \ell) \in[m] \times[r]$
However, low rank models are

- Sensitive to order-preserving transformation

- Inadequate for special structures.

$\Theta=\log (1+\mathcal{Z}), \quad$ where $\mathcal{Z}(i, j, k)=\frac{1}{d} \max (i, j, k)$.

Our main assumption
Instead, we assume there exists $f:[0,1]^{m} \rightarrow \mathbb{R}$ that satisfies

[^0]
Stochastic block approximation (SBA) to smooth tensor

Lemma (Block approximation). For any $k<d$, there exists k-membership function $z:[d] \rightarrow[k]$, and $\mathcal{G} \in \mathbb{R}^{k \times \cdots \times k}$ such that

$$
\frac{1}{d^{m}} \sum_{\omega \in[d]^{m}}|(\Theta \circ \sigma)(\omega)-\mathcal{G}(z(\omega))|^{2} \leq \frac{m^{2} L^{2}}{k^{2 \alpha}} .
$$

Based on this lemma and algorithms in [2], we find the optimizer

$$
\begin{equation*}
(\hat{z}, \hat{\mathcal{G}})=\underset{z:|d| \rightarrow|\vec{G}|}{\arg \min } \min _{\mathbb{R} x \times \cdots k} \sum_{x \in\lceil\sqrt{\mid m}}|\mathcal{Y}(\omega)-\mathcal{G}(z(\omega))|^{2} . \tag{1}
\end{equation*}
$$

We estimate the $\Theta \circ \sigma$ by

$$
\begin{equation*}
(\widehat{\Theta \circ \sigma})(\omega)=\hat{\mathcal{G}}(\hat{z}(\omega)), \text { for all } \omega \in[d]^{m} . \tag{2}
\end{equation*}
$$

Theoretical guarantees

Theorem (Mean square error). Let $\hat{\Theta}$ be the estimator from (2) with the choice of $k=\left\lceil d^{m+2 \alpha}\right\rceil$. Then,

$$
\frac{1}{d^{m}}\|\widehat{\Theta \circ \sigma}-\Theta \circ \sigma\|_{F}^{2} \lesssim \underbrace{d^{-\frac{2 m \alpha}{m+2 \alpha}}}_{\text {Nonparametric rate }}+\underbrace{\frac{\log d}{d^{m-1}}}_{\text {Clustering rate }}
$$

with high probability

Remark: Depending on constants m and α, convergence rate becomes

$$
\text { RHS of }(3) \asymp \begin{cases}d^{-\frac{2 \alpha}{1+\alpha}} & m=2, \alpha \in(0,1), \\ \log d / d & m=2, \alpha=1, \\ d^{-\frac{2 m a}{m+2 \alpha}} & m>2 .\end{cases}
$$

Though SBA guarantees fast convergence rate, polynomial complexity algorithms for (1) are unknown.

Ongoing work: polynomial algorithms

Sort-And-Smooth (SAS) method extended from [1]

Under the monotonically increasing degree assumption on signal Θ

$$
\frac{1}{d^{m-1}} \sum_{\ell=2}^{m} \sum_{i_{\ell} \in[d]} \Theta\left(i, i_{2}, \ldots, i_{m}\right)>\frac{1}{d^{m-1}} \sum_{\ell=2}^{m} \sum_{i_{\ell} \in[d]} \Theta\left(j, i_{2}, \ldots, i_{m}\right), \text { for all } i>j .
$$

Step 1 (sorting): Find $\hat{\sigma}$ so that the degree of $\mathcal{Y} \circ \hat{\sigma}^{-1}$ is increasing. Step 2 (smoothing): Estimate signal matrix $\hat{\Theta}=\operatorname{Block}_{k}\left(\mathcal{Y} \circ \hat{\sigma}^{-1}\right)$, where $\operatorname{Block}_{k}(\Theta):=$ Average $\left\{\Theta(\omega):\lfloor\omega k / d\rceil=\left\lceil\omega^{\prime} k / d\right\rceil\right\}$, for all $\omega^{\prime} \in[d]^{m}$

Spectral method extended from [3]
Step 1 (Unfolding): Unfold \mathcal{Y} into $\operatorname{Mat}(\mathcal{Y}) \in \mathbb{R}^{d^{[m / 2]} \times d^{[m / 2]}}$
Step 2 (SVD): Obtain SVD of $\operatorname{Mat}(\mathcal{Y})=\sum_{i \in\left[d d^{[m / 2]}\right]} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$.
Step 3 (Thresholding): Obtain $\operatorname{Mat}(\hat{\Theta})=\sum_{i \in[d[m / 2]]} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \mathbb{1}\left\{\lambda_{i} \geq d^{\left.\frac{[m / 2]}{2}\right\}}\right.$ and fold back to tensor $\hat{\Theta}$

Figure 1. Right triangular matrices show the true signal and left ones show the estimated nes. Simulation 1 follows monotonic degree assumption while Simulation 2 does not

	SBA SAS Spectral		
Convergence rate (power of d^{-1})	$\frac{2 m}{m+2}$	$\frac{2 m}{m+2}$	$\frac{4\lfloor\mathrm{~m} / 2\rfloor}{2\lfloor\mathrm{~m} / 2]+4}$
Polynomial complexity	No	Yes	Yes

Table 1. Comparison of SBA, SAS, and Spectral method for $\alpha=1$ and $m>2$.
Remark: as m increases, convergence rates of both algorithms get closer to that of SBA.

References

1] Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models. In International Conference on Machine Learning, pages 208-216. PMLR, 2014

1) Rungang Han Yuetian Luo Mizoyan Wang and Anru R Zhang Exact tlusterin in
12. Rungang Han, Yuetian Luo, Miaoyan Wang, and Anru R Zhang. Exact clustering in tensor block model:
Stataistical ontimality and computational linit arXiv preprint ariv. 201209996
[3] Jiaming Xu. Rates of convergence of spectral methods for graphon estimation. II International

[^0]: Representation : $\Theta(\omega)=f(\omega / d)$ for all $\omega \in[d]$
 α-Hölder continuity : $|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{\alpha}^{\alpha}$ for all $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{m}$ where the norm $\|\boldsymbol{x}\|_{p}^{p}:=\sum_{i=1}^{m}\left|x_{i}\right|^{p}$ for $\boldsymbol{x} \in \mathbb{R}^{m}$.

