

Estimating smooth tensors with unknown permutations

Main Problem

We consider permuted tensor model,

$$\mathcal{Y} = \Theta \circ \sigma + \mathcal{E},$$

where $\mathcal{Y} \in \mathbb{R}^{d \times \cdots \times d}$ is an observed data tensor, Θ is an unknown smooth signal tensor, σ is an unknown permutation, and $\mathcal{E} \in \mathbb{R}^{d \times \dots \times d}$ is a noise tensor consisting of zero-mean sub-Gaussian entries.

Main problem: how to estimate $\Theta \circ \sigma$ from the observed data tensor \mathcal{Y} ?

Limitations of low-rank assumption

Low-rank models assume

$$\Theta \circ \sigma = \sum_{\ell=1}^{r} \lambda_{\ell} \boldsymbol{a}_{1}^{(\ell)} \otimes \cdots \otimes \boldsymbol{a}_{m}^{(\ell)},$$

where λ_{ℓ} is a scalar and $\boldsymbol{a}_{k}^{(\ell)} \in \mathbb{R}^{d}$ for all $(k, \ell) \in [m] \times [r]$.

However, low rank models are

Sensitive to order-preserving transformation

 $\Theta = \frac{1}{1 + \exp(-c(\mathcal{Z}))},$ $\mathcal{Z} = \boldsymbol{a}^{\otimes 3} + \boldsymbol{b}^{\otimes 3} + \boldsymbol{c}^{\otimes 3}.$

Inadequate for special structures.

Our main assumption

Instead, we assume there exists $f: [0,1]^m \to \mathbb{R}$ that satisfies

- **Representation** : $\Theta(\omega) = f(\omega/d)$ for all $\omega \in [d]^m$,
- α -Hölder continuity : $|f(\boldsymbol{x}) f(\boldsymbol{y})| \le L \|\boldsymbol{x} \boldsymbol{y}\|_{\alpha}^{\alpha}$ for all $\boldsymbol{x}, \boldsymbol{y} \in [0, 1]^{m}$, where the norm $\|\boldsymbol{x}\|_p^p := \sum_{i=1}^m |x_i|^p$ for $\boldsymbol{x} \in \mathbb{R}^m$.

Chanwoo Lee¹

¹Department of Statistics, University of Wisconsin-Madison

Stochastic block approximation (SBA) to smooth tensor

Lemma (Block approximation). For any k < d, there exists k-membership function $z \colon [d] \to [k]$, and $\mathcal{G} \in \mathbb{R}^{k \times \dots \times k}$ such that

$$\frac{1}{d^m} \sum_{\omega \in [d]^m} \left| (\Theta \circ \sigma)(\omega) - \mathcal{G}(z(\omega)) \right|^2 \le \frac{m^2 L^2}{k^{2\alpha}}$$

Based on this lemma and algorithms in [2], we find the optimizer, $(\hat{z}, \hat{\mathcal{G}}) = \operatorname*{arg\,min}_{z:\,[d] \to [k], \mathcal{G} \in \mathbb{R}^{k \times \dots \times k}} \sum_{\omega \in [d]^m} |\mathcal{Y}(\omega) - \mathcal{G}(z(\omega))|^2.$ (1)We estimate the $\Theta \circ \sigma$ by $(\widehat{\Theta} \circ \widehat{\sigma})(\omega) = \widehat{\mathcal{G}}(\widehat{z}(\omega)), \text{ for all } \omega \in [d]^m.$ (2)

Theoretical guarantees

where $\mathcal{Z}(i,j,k) = \frac{1}{d} \max(i,j,k).$

where

Theorem (Mean square error). Let
$$\hat{\Theta}$$
 be the hoice of $k = \lceil d^{\frac{m}{m+2\alpha}} \rceil$. Then,
 $1 = \lceil d^{\frac{m}{m+2\alpha}} \rceil$. Then,

$$\frac{1}{d^m} \| \Theta \circ \sigma - \Theta \circ \sigma \|_F^2 \lesssim \underbrace{d^{-\frac{2m\alpha}{m+2\alpha}}}_{\text{Nonparametric rate}}$$

with high probability.

Remark: Depending on constants
$$m$$
 and α , c

$$\mathsf{RHS of (3)} \asymp \begin{cases} d^{-\frac{2\alpha}{1+\alpha}} & m = \\ \log d/d & m = \\ d^{-\frac{2m\alpha}{m+2\alpha}} & m > \end{cases}$$

Though SBA guarantees fast convergence rate, polynomial complexity algorithms for (1) are unknown.

Miaoyan Wang¹

convergence rate becomes

 $2, \alpha \in (0, 1),$ $2, \alpha = 1,$ 2.

Sort-And-Smooth (SAS) method extended from [1]

Under the monotonically increasing degree assumption on signal Θ ,

 $\frac{1}{d^{m-1}} \sum_{\ell=2}^{m} \sum_{i_{\ell} \in [d]} \Theta(i, i_2, \dots, i_m) > \frac{1}{\alpha}$

Spectral method extended from [3]

Step 1 (Unfolding): Unfold \mathcal{Y} into $Mat(\mathcal{Y}) \in \mathbb{R}^{d^{\lfloor m/2 \rfloor} \times d^{\lceil m/2 \rceil}}$. Step 2 (SVD): Obtain SVD of Mat $(\mathcal{Y}) = \sum_{i \in [d^{\lfloor m/2 \rfloor}]} \lambda_i \boldsymbol{u}_i \boldsymbol{v}_i^T$. **Step 3** (Thresholding): Obtain $Mat(\hat{\Theta}) = \sum_{i \in [d^{\lfloor m/2 \rfloor}]} \lambda_i \boldsymbol{u}_i \boldsymbol{v}_i^T \mathbb{1}\{\lambda_i \geq d^{\frac{\lceil m/2 \rceil}{2}}\}$ and

fold back to tensor $\hat{\Theta}$.

Figure 1. Right triangular matrices show the true signal and left ones show the estimated ones. Simulation 1 follows monotonic degree assumption while Simulation 2 does not.

> Convergence rate (p Polynomial complexi

Table 1. Comparison of SBA, SAS, and Spectral method for $\alpha = 1$ and m > 2. **Remark:** as *m* increases, convergence rates of both algorithms get closer

to that of SBA.

- In International Conference on Machine Learning, pages 208–216. PMLR, 2014.
- Conference on Machine Learning, pages 5433–5442. PMLR, 2018.

The research was supported in part by NSF DMS-1915978, NSF DMS-2023239, and Wisconsin Alumni Research Foundation

Ongoing work: polynomial algorithms

$$\frac{1}{d^{m-1}} \sum_{\ell=2}^{m} \sum_{i_{\ell} \in [d]} \Theta(j, i_2, \dots, i_m), \text{ for all } i > j.$$

Step 1 (sorting): Find $\hat{\sigma}$ so that the degree of $\mathcal{Y} \circ \hat{\sigma}^{-1}$ is increasing. **Step 2** (smoothing): Estimate signal matrix $\hat{\Theta} = \text{Block}_k(\mathcal{Y} \circ \hat{\sigma}^{-1})$, where $\mathsf{Block}_k(\Theta) := \mathsf{Average}\{\Theta(\omega) \colon \lfloor \omega k/d \rceil = \lceil \omega' k/d \rceil\}, \text{ for all } \omega' \in [d]^m.$

	SBA	SAS	Spectral
ower of d^{-1})	$\frac{2m}{m+2}$ No	$\frac{2m}{m+2}^*$ Yes	$\frac{4\lfloor m/2 \rfloor}{2\lfloor m/2 \rfloor + 4}$ Yes
		* Rest	ricted model

References

[1] Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models.

[2] Rungang Han, Yuetian Luo, Miaoyan Wang, and Anru R Zhang. Exact clustering in tensor block model: Statistical optimality and computational limit. arXiv preprint arXiv:2012.09996, 2020.

[3] Jiaming Xu. Rates of convergence of spectral methods for graphon estimation. In International