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Main problems: the signal plus noise model
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We focus on the two problems

1. Signal tensor estimation: How to estimate the signal tensor Θ?

2. Complexity of tensor completion: How many observed tensor entries do we need?
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Our contribution

Special case with full observation:

Model Our rate∗ (power of d) Previous results

Tensor block model −(K − 1)/2 α =∞; minimax rate in Wang and Zeng (2019)

Single index model −(K − 1)/3
α = 1; conjecture on the optimality; matrix rate

d−1/3 improves O(d−1/4) by Ganti et al. (2017)

Generalized linear model −(K − 1)/3 α = 1; close to parametric rate in Lee and Wang (2020)

α-smooth Psgn(r) −(K − 1) min( α
α+2 ∧

1
2 )

faster rate as α increases; extended matrix case
in Lee et al. (2021)
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Inadequacies of low-rank models

• Low-rank models (Anandkumar et al., 2014; Montanari and Sun, 2018; Cai et al.,
2019).
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Inadequacies of low-rank models

• Sensitivity to order-preserving transformation
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Θ =
1

1 + exp(−c (Z))
, where

Z = a⊗3 + b⊗3 + c⊗3.

• Inadequacy for special structures.

Θ = log(1 + Z), where

Z(i , j , k) = 1
d max(i , j , k).
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Why sign matters?

For a bounded tensor Θ ∈ [−1, 1]d1×···×dK ,

Θ ≈ 1

|H|
∑
π∈H

sgn(Θ− π), where H =

{
−1. . . . ,− 1

H
, 0,

1

H
, . . . , 1

}
.

• Sign tensors are invariant to order-preserving transformation.

• More flexible signal tensors are allowed by using sign tensor series representation.

• In noisy case, we estimate sgn(Θ− π) from the tensor data sgn(Y − π).
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Sign rank
• Key idea: we use a local notion of low-rankness to allow a richer family of signal

tensors.

• Two tensors are sign equivalent denoted Θ ' Θ′ if sgn(Θ) = sgn(Θ′), where

[sgn(Θ)]ω :=

{
1 if Θω ≥ 0,

−1 otherwise.

.

• Sign rank is defined as

srank(Θ) = min{rank(Θ′) : Θ′ ' Θ,Θ′ ∈ Rd1×···×dK }.
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Sign representable tensors

Sign representable tensors

A tensor Θ is called r -sign representable if the tensor (Θ− π) has sign rank bounded
by r for all π ∈ [−1, 1].

• Most existing structure tensors belong to sign representable family:
• Low-rank CP tensors, Tucker tensors, stochastic block models.
• High-rank tensors from GLM, single index models,
• Tensors with repeating patterns, e.g. Θ(i1, . . . , iK ) = log(1 + max(i1, . . . , iK )) is

2-sign representable.

• Instead of the classical low-rank assumption, we propose the sign representable
tensor family

Θ ∈Psgn(r) := {Θ: srank(Θ− π) ≤ r for all π ∈ [−1, 1]}.
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Our solution: sign signal helps!
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Step 1: representation

• We observe a noisy incomplete tensor YΩ ∈ [−1, 1]d1×···×dK with observed index
set Ω ⊂ [d1]× · · · × [dK ].
• We dichotomize the data into a series of sign tensors:

{sgn(YΩ − π)}π∈H, where H =

{
−1, . . . ,− 1

H
, 0,

1

H
, . . . , 1

}
.
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Step 2: weighted classification

• We estimate sgn(Θ− π) through sgn(YΩ − π) via weighted classification.

• Objective function of weighted classification is

L(Z,YΩ − π) =
1

|Ω|
∑
ω∈Ω

|Y(ω)− π|︸ ︷︷ ︸
weight

× |sgn(Z(ω))− sgn(Y(ω)− π)|︸ ︷︷ ︸
classification loss
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Step 2: weighed classification

• If Θ ∈Psgn(r) is α-smooth (α > 0), we have a unique optimizer such that

sgn(Θ− π) = arg min
Z : rank(Z)≤r

EYΩ
L(Z,YΩ − π).

• We obtain a series of optimizers {Ẑπ}π∈H as

Ẑπ = arg min
Z : rank(Z)≤r

L(Z,YΩ − π).
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Step 3: aggregation

• From a series of optimizers {Ẑπ}π∈H in the weighted classification, we obtain the
tensor estimate

Θ̂ =
1

2H + 1

∑
π∈H

sgnẐπ.
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Identification for sign tensor estimation
• We quantify difficulty of the problem using CDF G (π) = Pω∈Π[Θ(ω) ≤ π].

α-smoothness
• Partition [−1, 1] = N ∪N c , where N c consists of levels whose pseudo density

(histogram with bin size ∆s = d−K ) is uniformly bounded, and N otherwise.

• G (π) is globally α-smooth in that for all π ∈ N c ,

sup
∆s≤t<ρ(π,N )

G (π + t)− G (π − t)

tα
≤ c ,

for two constants α, c > 0, where ρ(π,N ) = minπ′∈N |π − π′|+ ∆s.
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Estimation error
For two tensor Θ1,Θ2, define MAE(Θ1,Θ2) = Eω∈Π|Θ1(ω)−Θ2(ω)|.

Estimation error (L. and Wang 2021)

Suppose Θ ∈Psgn(r) is α-smooth with bounded |N |, and d1 = · · · = dK = d .

1. (Sign tensor estimation) For all π ∈ N c , with high probability,

MAE(sgnẐπ, sgn(Θ− π)) .∗
(

dr

|Ω|

) α
α+2

.

2. (Tensor estimation)

MAE(Θ̂,Θ) .∗
(

dr

|Ω|

) α
α+2

︸ ︷︷ ︸
Error inherited from sign estimation

+
1

H︸︷︷︸
Bias

+
Hdr

|Ω|︸︷︷︸
Variance

�∗∗
(

dr

|Ω|

)min( α
α+2

, 1
2 )
.

∗log term suppressed, ∗∗H � (|Ω|/dr)1/2

• Tensor estimation is generally no better than sign tensor estimation.
• See paper for general case that allows unbounded |N | and sub-Gaussian noise.
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Data application: Brain connectivity
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Brain connectivity

• The human brain connectivity dataset consists of 68
brain regions for 114 individuals with their IQ scores.

• Data tensor Y ∈ {0, 1}68×68×114.

• We examine the estimated signal tensor Θ̂.

• Top 10 brain edges based on regression analysis
show inter-hemisphere connections.
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Data application: NIPS

NIPS 1988

NIPS 2003
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• The NIPS dataset consists of word occurrence counts in
papers published from 1987 to 2003.

• Data tensor Y ∈ R100×200×17.

• We examine the estimated signal tensor Θ̂.

• Most frequent words are consistent with the
active topics

• Strong heterogeneity among word occurrences
across authors and years.

• Similar word patterns (B. Schölkopf and A.
Smola).
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Data application: Brain connectivity + NIPS

Table: MAE comparison in the brain data and NIPS data on 5-folded cross-validation

• Our method outperforms the low-rank CP method in applications.
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Summary

• We have developed a completion method that address both low- and
high-rankness based on sign series representation.

• Estimation error rates and sample complexities are established.

• Our approach has good interpretation and prediction performance in both
simulations and data applications.

• Preprint: https://arxiv.org/abs/2102.00384

• Software: https://cran.r-project.org/web/packages/TensorComplete/index.html
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Thank you!
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