Smooth tensor estimation with unknown permutation

Chanwoo Lee ${ }^{1}$ and Miaoyan Wang ${ }^{2}$

Department of Statistics, University of Wisconsin - Madison

NeurIPS workshop on Quantum Tensor Networks in Machine Learning

[^0]Main problems: the permuted signal plus noise model

- Question: How to estimate the permuted signal tensor $\Theta \circ \pi$?

Main problems: the permuted signal plus noise model

- Question: How to estimate the permuted signal tensor $\Theta \circ \pi$?
- We assume that there exists a multivariate function $f:[0,1]^{m} \rightarrow \mathbb{R}$ underlying the signal tensor, such that

$$
\Theta_{i_{1}, \ldots, i_{m}}=f\left(\frac{i_{1}}{d}, \ldots, \frac{i_{m}}{d}\right), \text { for all } i_{1}, \ldots, i_{m} \in[d] .
$$

Our contribution

	Pananjady and Samworth (2020)	Balasubramanian (2021)	Li et al. (2019)	Ours* *
model structure	monotonic	Lipschitz	Lipschitz	α-smoothness
minimax lower bound	$\sqrt{ }$	\times	\times	$\sqrt{ }$
error rate for order-3 tensors	d^{-1}	$d^{-6 / 5}$	d^{-1}	d^{-2}
polynomial algorithm	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$

We list here only the result for infinitely smooth order-3 tensors.

- We develop a general permuted model for an arbitrary smoothness and order of tensors with optimal rate.

Our contribution

	Pananjady and Samworth (2020)	Balasubramanian (2021)	Li et al. (2019)	Ours*
model structure	monotonic	Lipschitz	Lipschitz	α-smoothness
minimax lower bound	$\sqrt{ }$	\times	\times	$\sqrt{ }$
error rate for order-3 tensors	d^{-1}	$d^{-6 / 5}$	d^{-1}	d^{-2}
polynomial algorithm	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$

We list here only the result for infinitely smooth order-3 tensors.

- We develop a general permuted model for an arbitrary smoothness and order of tensors with optimal rate.

- We discover a phase transition phenomenon with respect to the smoothness threshold needed for optimal tensor recovery.
- We provide an efficient polynomial-time Borda count algorithm that provably achieves optimal rate.

Block-wise polynomial approximation

Block-wise polynomial approximation

Estimated signal

- We propose the least square estimation,

$$
\begin{aligned}
\left(\hat{\Theta}^{\mathrm{LSE}}, \hat{\pi}^{\mathrm{LSE}}\right) & =\underset{\Theta \in \mathscr{B}(k, \ell), \pi \in[d] \rightarrow[d]}{\arg \min }\|\mathcal{Y}-\Theta \circ \pi\|_{F} \quad \text { where, } \\
\mathscr{B}(k, \ell) & =\left\{\mathcal{B} \in\left(\mathbb{R}^{d}\right)^{\otimes m}: \mathcal{B}(\omega)=\sum_{\Delta \in \mathcal{E}_{k}} \text { Poly }_{\ell, \Delta}(\omega) \mathbb{1}\{\omega \in \Delta\} \text { for all } \omega \in[d]^{m}\right\}
\end{aligned}
$$

Least-squares estimation error and its optimality

For two tensor Θ_{1}, Θ_{2}, define $\operatorname{MSE}\left(\Theta_{1}, \Theta_{2}\right)=\frac{1}{d^{m}}\left\|\Theta_{1}-\Theta_{2}\right\|_{F}^{2}$.

Least-squares estimation error (L. and Wang 2021)

Suppose that the generating function f is α-Hölder smooth. For optimally chosen polynomial degree ℓ^{*} and the number of groups k^{*},

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\Theta}^{\mathrm{LSE}} \circ \hat{\pi}^{\mathrm{LSE}}, \Theta \circ \pi\right) & \lesssim \begin{cases}d^{-\frac{2 m \alpha}{m+2 \alpha}} & \text { when } \alpha<\frac{m(m-1)}{2} \\
\frac{\log d}{d^{m-1}} & \text { when } \alpha \geq \frac{m(m-1)}{2}\end{cases} \\
\ell^{*} & =\min (\lceil\alpha\rceil, m(m-1) / 2)-1 \text { and } k^{*}=\left\lceil d^{m /\left(m+2 \min \left(\alpha, \ell^{*}+1\right)\right)}\right\rceil
\end{aligned}
$$

- The error consists of the nonparametric error and permutation error.
- The dominating error depends on the smoothness and order of tensor.
- We show that the least-square estimation is minimax rate-optimal.

Least-squares estimation error and its optimality

For two tensor Θ_{1}, Θ_{2}, define $\operatorname{MSE}\left(\Theta_{1}, \Theta_{2}\right)=\frac{1}{d^{m}}\left\|\Theta_{1}-\Theta_{2}\right\|_{F}^{2}$.

Least-squares estimation error (L. and Wang 2021)

Suppose that the generating function f is α-Hölder smooth. For optimally chosen polynomial degree ℓ^{*} and the number of groups k^{*},

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\Theta}^{\mathrm{LSE}} \circ \hat{\pi}^{\mathrm{LSE}}, \Theta \circ \pi\right) & \lesssim \begin{cases}d^{-\frac{2 m \alpha}{m+2 \alpha}} & \text { when } \alpha<\frac{m(m-1)}{2} \\
\frac{\log d}{d^{m-1}} & \text { when } \alpha \geq \frac{m(m-1)}{2}\end{cases} \\
\ell^{*} & =\min (\lceil\alpha\rceil, m(m-1) / 2)-1 \text { and } k^{*}=\left\lceil d^{m /\left(m+2 \min \left(\alpha, \ell^{*}+1\right)\right)}\right\rceil
\end{aligned}
$$

- The error consists of the nonparametric error and permutation error.
- The dominating error depends on the smoothness and order of tensor.
- We show that the least-square estimation is minimax rate-optimal.

However, the algorithm for the least square estimation is computationally intractable.

Polynomial-time algorithm: Borda count estimation

1. Sorting stage: Estimate a permutation $\hat{\pi}^{\mathrm{BC}}$ such that the permuted score function $\tau \circ\left(\hat{\pi}^{\mathrm{BC}}\right)^{-1}$ is monotonically increasing, where

$$
\tau(i)=\frac{1}{d^{m-1}} \sum_{\left(i_{2}, \ldots, i_{m}\right) \in[d]^{m-1}} \mathcal{Y}\left(i, i_{2}, \ldots, i_{m}\right) .
$$

2. Polynomial approximation stage: Estimate the degree- ℓ polynomial block tensor

$$
\hat{\Theta}^{\mathrm{BC}}=\underset{\Theta \in \mathscr{B}(k, \ell)}{\arg \min }\left\|\mathcal{Y} \circ\left(\hat{\pi}^{\mathrm{BC}}\right)^{-1}-\Theta\right\|_{F} .
$$

Polynomial-time algorithm: Borda count estimation

1. Sorting stage: Estimate a permutation $\hat{\pi}^{B C}$ such that the permuted score function $\tau \circ\left(\hat{\pi}^{\mathrm{BC}}\right)^{-1}$ is monotonically increasing, where

$$
\tau(i)=\frac{1}{d^{m-1}} \sum_{\left(i_{2}, \ldots, i_{m}\right) \in[d]^{m-1}} \mathcal{Y}\left(i, i_{2}, \ldots, i_{m}\right) .
$$

2. Polynomial approximation stage: Estimate the degree- ℓ polynomial block tensor

$$
\hat{\Theta}^{\mathrm{BC}}=\underset{\Theta \in \mathscr{B}(k, \ell)}{\arg \min }\left\|\mathcal{Y} \circ\left(\hat{\pi}^{\mathrm{BC}}\right)^{-1}-\Theta\right\|_{F} .
$$

Observation

Sorted observation

Polynomial approximation

True signal

Borda count algorithm provably achieves optimal rate under monotonicity assumptions

Simulation results

Thank you!

References I

Balasubramanian, K. (2021). Nonparametric modeling of higher-order interactions via hypergraphons. arXiv preprint arXiv:2105.08678.
Li, Y., Shah, D., Song, D., and Yu, C. L. (2019). Nearest neighbors for matrix estimation interpreted as blind regression for latent variable model. IEEE Transactions on Information Theory, 66(3):1760-1784.
Pananjady, A. and Samworth, R. J. (2020). Isotonic regression with unknown permutations: Statistics, computation, and adaptation. arXiv preprint arXiv:2009.02609.

[^0]: ${ }^{1}$ chanwoo.lee@wisc.edu ${ }^{2}$ miaoyan. wang@wisc.edu

