
Smooth tensor estimation with unknown permutation

Chanwoo Lee1 and Miaoyan Wang2

Department of Statistics, University of Wisconsin - Madison

NeurIPS workshop on Quantum Tensor Networks in Machine Learning

1chanwoo.lee@wisc.edu 2miaoyan.wang@wisc.edu
1 / 8



Main problems: the permuted signal plus noise model

= +

• Question: How to estimate the permuted signal tensor Θ ◦ π?

• We assume that there exists a multivariate function f : [0, 1]m → R underlying the
signal tensor, such that

Θi1,...,im = f

(
i1
d
, . . . ,

im
d

)
, for all i1, . . . , im ∈ [d ].
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Our contribution

Pananjady and Samworth (2020) Balasubramanian (2021) Li et al. (2019) Ours∗

model structure monotonic Lipschitz Lipschitz α-smoothness
minimax lower bound
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error rate for order-3 tensors d−1 d−6/5 d−1 d−2

polynomial algorithm
√
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We list here only the result for infinitely smooth order-3 tensors.

• We develop a general permuted model for an arbitrary smoothness and order of
tensors with optimal rate.
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• We discover a phase transition phenomenon with
respect to the smoothness threshold needed for optimal
tensor recovery.

• We provide an efficient polynomial-time Borda count
algorithm that provably achieves optimal rate.
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Block-wise polynomial approximation

           Block-wise 
polynomial approximation

• We propose the least square estimation,

(Θ̂LSE,π̂LSE) = argmin
Θ∈B(k,ℓ), π∈[d ]→[d ]

∥Y −Θ ◦ π∥F where,

B(k, ℓ) =

{
B ∈ (Rd)⊗m : B(ω) =

∑
∆∈Ek Polyℓ,∆(ω)1{ω ∈ ∆} for all ω ∈ [d ]m

}
.
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Least-squares estimation error and its optimality

For two tensor Θ1,Θ2, define MSE(Θ1,Θ2) =
1
dm ∥Θ1 −Θ2∥2F .

Least-squares estimation error (L. and Wang 2021)

Suppose that the generating function f is α-Hölder smooth. For optimally chosen
polynomial degree ℓ∗ and the number of groups k∗,

MSE(Θ̂LSE ◦ π̂LSE,Θ ◦ π) ≲

{
d− 2mα

m+2α when α < m(m−1)
2 ,

log d
dm−1 when α ≥ m(m−1)

2 .

ℓ∗ = min(⌈α⌉,m(m − 1)/2)− 1 and k∗ = ⌈dm/(m+2min(α,ℓ∗+1))⌉

• The error consists of the nonparametric error and permutation error.

• The dominating error depends on the smoothness and order of tensor.

• We show that the least-square estimation is minimax rate-optimal.

However, the algorithm for the least square estimation is computationally intractable.
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Polynomial-time algorithm: Borda count estimation
1. Sorting stage: Estimate a permutation π̂BC such that the permuted score

function τ ◦ (π̂BC)−1 is monotonically increasing, where

τ(i) =
1

dm−1

∑
(i2,...,im)∈[d ]m−1

Y(i , i2, . . . , im).

2. Polynomial approximation stage: Estimate the degree-ℓ polynomial block tensor

Θ̂BC = argmin
Θ∈B(k,ℓ)

∥Y ◦ (π̂BC)−1 −Θ∥F .

Observation Sorted observation Polynomial approximation True signal

Borda count algorithm provably achieves optimal rate under monotonicity assumptions
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Simulation results

Observation Model 1 Borda Count Spectral LSE

Observation Model 3 Borda Count Spectral LSE

Observation Model 5 Borda Count Spectral LSE

Figure: Caption
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Thank you!

8 / 8



References I

Balasubramanian, K. (2021). Nonparametric modeling of higher-order interactions via
hypergraphons. arXiv preprint arXiv:2105.08678.

Li, Y., Shah, D., Song, D., and Yu, C. L. (2019). Nearest neighbors for matrix
estimation interpreted as blind regression for latent variable model. IEEE
Transactions on Information Theory, 66(3):1760–1784.

Pananjady, A. and Samworth, R. J. (2020). Isotonic regression with unknown
permutations: Statistics, computation, and adaptation. arXiv preprint
arXiv:2009.02609.

1 / 1


	Appendix
	References


