Tensor denoising and completion based on ordinal observations

Chanwoo Lee chanwoo.lee@wisc.edu Miaoyan Wang miaoyan.wang@wisc.edu

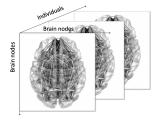
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

University of Wisconsin - Madison

ICML 2020

Ordinal tensor data in applications

- Tensor in networks (Human Connectome Project (HCP)).
- Each entry $y_{\omega} \in \{\text{high}, \text{moderate}, \text{low}\}.$



- Tensor in recommendation system (Baltrunas et al., 2011).
- Each entry $y_\omega \in \{1,2,3,4,5\}$

Challenges from ordinal tensor data

• Goal: learn a probabilistic tensor from multi-way ordinal observations.

3 / 18

4 E b

Challenges from ordinal tensor data

- Goal: learn a probabilistic tensor from multi-way ordinal observations.
- Two key properties needed for a reasonable model.
 - The model should be invariant under a reversal of categories

 $like \prec neutral \prec dislike \Longleftrightarrow like \succ neutral \succ dislike.$

O The parameter interpretations should be consistent under merging or splitting of contiguous categories.

Challenges from ordinal tensor data

- Goal: learn a probabilistic tensor from multi-way ordinal observations.
- Two key properties needed for a reasonable model.
 - The model should be invariant under a reversal of categories

 $like \prec neutral \prec dislike \Longleftrightarrow like \succ neutral \succ dislike.$

- On The parameter interpretations should be consistent under merging or splitting of contiguous categories.
- Two challenges for ordinal tensor model.
 - The entries do not belong to exponential family distribution.
 - On The observation contains less information neither the underlying signal nor the quantization operator is unknown.

Summary of our contribution

- We establish the recovery theory for signal tensors and quantization operators simultaneously from observed ordinal tensor data.
- Let $\mathcal{Y} \in \mathbb{R}^{d \times \cdots \times d}$ be an order-K, L-level ordinal tensor.

	Bhaskar (2016)	Ghadermarzy et al. (2018)	This paper
Higher-order tensors $(K \ge 3)$	×	✓	1
Multi-level categories ($L \ge 3$)	1	×	1
Error rate for tensor denoising	d^{-1} for $K=2$	$d^{-(K-1)/2}$	$d^{-(K-1)}$
Optimality guarantee	unkonwn	X	1
Sample complexity for completion	d^K	Kd	Kd

- Preprint: https://arxiv.org/abs/2002.06524
- Software: https://cran.r-project.org/web/packages/tensorordinal/index.html

Probabilistic model: a cumulative link model

- $[L] = \{1, 2, \cdots, L\}$ denotes the ordinal level.
- Let 𝔅 = [[𝒱_ω]] ∈ [L]^{d₁×···×d_K} be an ordinal tensor. The entries 𝒱_ω are independently distributed with cumulative probabilities:

$$\mathbb{P}(y_{\omega} \le \ell | \boldsymbol{b}, \Theta) = f(\boldsymbol{b}_{\ell} - \boldsymbol{\theta}_{\omega}), \quad \text{ for all } \ell \in [L-1].$$
(1)

ex) $f(x) = \frac{e^x}{1+e^x}$ is a logistic link.

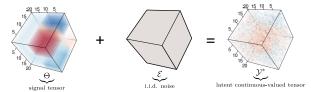
- The additive, cumulative model enjoys two key properties for ordinal tensor data.
- If f is a cumulative function,

$$\mathbb{P}(y_{\omega} = \ell) = f(b_{\ell} - \theta_{\omega}) - f(b_{\ell-1} - \theta_{\omega}) = \mathbb{P}(b_{\ell-1} < \frac{y_{\omega}^*}{\omega} \le b_{\ell}),$$

where $\epsilon_{\omega} \stackrel{i.i.d}{\sim} f$ and $y_{\omega}^* = \theta_{\omega} + \epsilon_{\omega}$.

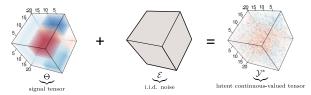
Latent variable interpretation

• We can interpret the ordinal tensor model (1) as an *L*-level quantization model.

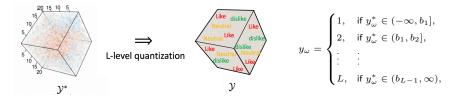


Latent variable interpretation

• We can interpret the ordinal tensor model (1) as an *L*-level quantization model.



• Given intervals from the cut-off points vector **b**.



ICML 2020

Probabilistic model: assumptions on Θ

 $\bullet\,$ The parameter Θ admits the Tucker decomposition:

$$\Theta = \mathcal{C} \times_1 M_1 \times_2 \cdots \times_K M_K,$$

where $\mathcal{C} \in \mathbb{R}^{r_1 \times \cdots r_K}$ is a core tensor, $M_k \in \mathbb{R}^{d_k \times r_k}$ are factor matrices.

• Entries of Θ are uniformly bounded in magnitude by a constant $\alpha \in \mathbb{R}_+$.

Rank constrained M-estimation

- Let $\Omega \subset [d_1] \times \cdots \times [d_K]$ denote the set of observed indices. Ω could be the full set or incomplete set (for completion).
- The log-likelihood associated with the observations is

$$\mathcal{L}_{\mathcal{Y},\Omega}(\Theta, \boldsymbol{b}) = \sum_{\omega \in \Omega} \sum_{\ell \in [L]} \Big\{ \mathbb{1}_{\{y_\omega = \ell\}} \log \big[f(b_\ell - \theta_\omega) - f(b_{\ell-1} - \theta_\omega) \big] \Big\}.$$

A 3 b

Rank constrained M-estimation

- Let $\Omega \subset [d_1] \times \cdots \times [d_K]$ denote the set of observed indices. Ω could be the full set or incomplete set (for completion).
- The log-likelihood associated with the observations is

$$\mathcal{L}_{\mathcal{Y},\Omega}(\Theta, \boldsymbol{b}) = \sum_{\omega \in \Omega} \sum_{\ell \in [L]} \Big\{ \mathbbm{1}_{\{y_\omega = \ell\}} \log \big[f(b_\ell - \theta_\omega) - f(b_{\ell-1} - \theta_\omega) \big] \Big\}.$$

• We propose a rank-constrained maximum likelihood estimation for Θ .

$$\begin{split} (\hat{\Theta}, \hat{\boldsymbol{b}}) &= \underset{\Theta \in \mathcal{P}, \boldsymbol{b} \in \mathcal{B}}{\arg \max} \mathcal{L}_{\mathcal{Y}, \Omega}(\Theta, \boldsymbol{b}) \quad \text{where,} \\ \mathcal{P} &= \{ \Theta \in \mathbb{R}^{d_1 \times \dots \times d_K} : \operatorname{rank}(\mathcal{P}) \leq \boldsymbol{r}, \ \|\Theta\|_{\infty} \leq \alpha, \quad \underbrace{\langle \Theta, \mathcal{J} \rangle = 0}_{\substack{\text{identifiability condition}}} \}, \\ \mathcal{B} &= \{ \boldsymbol{b} \in \mathbb{R}^{L-1} : \|\boldsymbol{b}\|_{\infty} \leq \beta, \ \min_{\ell} (b_{\ell} - b_{\ell-1}) \geq \Delta > 0 \}. \end{split}$$

Here, $\mathcal{J} = \llbracket 1 \rrbracket \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ denotes a tensor of all ones.

C.Lee, M.Wang (UW-Madison)

• Tensor denoising:

 \triangleright (Q1) How accurately can we estimate the latent signal tensor Θ from the ordinal observation \mathcal{Y} ?

A 3 b

Tensor denoising:

- \triangleright (Q1) How accurately can we estimate the latent signal tensor Θ from the ordinal observation \mathcal{Y} ?
- (A1) Let us define $MSE(\hat{\Theta}, \Theta^{true}) = \frac{1}{\prod_{k=1}^{d_k}} \|\hat{\Theta} \Theta^{true}\|_F^2$.

Statistical convergence (L. and Wang, 2020)

With very high probability, our estimator $\hat{\Theta}$ satisfies

$$\mathrm{MSE}(\hat{\Theta}, \Theta^{\mathrm{true}}) \leq \min\left(4\alpha^2, \ c_1 r_{\max}^{K-1} \frac{\sum_k d_k}{\prod_k d_k}\right),$$

where $c_1 = c(f, K) > 0$ is a constant.

• Tensor denoising:

(Q1') Is this bound optimal?

< ∃⇒

• Tensor denoising:

- (Q1') Is this bound optimal?
- ► (A1')

Minimax lower bound (L. and Wang, 2020)

Under some mild technical conditions,

$$\inf_{\hat{\Theta} \in \mathcal{P}} \sup_{\Theta^{\text{true}} \in \mathcal{P}} \mathbb{P}\left\{ \text{MSE}(\hat{\Theta}, \Theta^{\text{true}}) \ge c \min\left(\alpha^2, \ Cr_{\max} \frac{d_{\max}}{\prod_k d_k}\right) \right\} \ge \frac{1}{8}$$

where $C=C(\alpha,L,f,\pmb{b})>0$ and c>0 are constants independent of tensor dimension and the rank.

So our estimation bound is rate-optimal.

C.Lee, M.Wang	(UW-Madison)
---------------	--------------

Theoretical results: tensor completion

• Tensor completion:

• (Q2) How many sampled entries do we need to consistently recover Θ ?

→

Theoretical results: tensor completion

• Tensor completion:

- (Q2) How many sampled entries do we need to consistently recover Θ ?
- (A2) Let us define $\|\Theta \hat{\Theta}\|_{F,\Pi}^2 = \sum_{\omega \in [d_1] \times \cdots \times [d_K]} \pi_{\omega} (\Theta_{\omega} \hat{\Theta}_{\omega})^2$.

Sample complexity (L. and Wang, 2020)

Let $\{y_{\omega}\}_{\omega\in\Omega}$ be the ordinal observation, where Ω is chosen at random with replacement according to a probability distribution Π . Then, with very high probability,

$$\|\Theta - \hat{\Theta}\|_{F,\Pi}^2 o 0, \quad \text{ as } \quad rac{|\Omega|}{\sum_k d_k} o \infty.$$

- The number of free parameters is roughly on the order of $\sum_k d_k$.
- The sample complexity $|\Omega| \gg \mathcal{O}(\sum_k d_k)$ is almost optimal.

• The rank r is unknown

2

12 / 18

・ロト ・四ト ・ヨト ・ヨト

• The rank r is unknown \implies Bayesian information criterion (BIC).

イロン イヨン イヨン イヨン

- The rank r is unknown \implies Bayesian information criterion (BIC).
- Non-convex problem

イロン イヨン イヨン イヨン

- The rank r is unknown \implies Bayesian information criterion (BIC).
- Non-convex problem \implies Alternating optimization approach.

3

12 / 18

イロト イヨト イヨト イヨト

- The rank r is unknown \implies Bayesian information criterion (BIC).
- Non-convex problem \implies Alternating optimization approach.
 - Let $\mathcal{L}_{\mathcal{Y},\Omega}(\mathcal{C}, \mathcal{M}_1, \cdots, \mathcal{M}_K, \boldsymbol{b}) = \mathcal{L}_{\mathcal{Y},\Omega}(\Theta, \boldsymbol{b}).$

Algorithm: Alternating optimization

Result: Estimated Θ , together with core tensor and factor matrices Random initialization;

Repeat until converge;

$$\mathcal{C}^{(n)} = \arg \max_{\mathcal{C}} \mathcal{L}_{\mathcal{Y},\Omega}(\mathcal{C}, \mathcal{M}_{1}^{(n-1)}, \cdots, \mathcal{M}_{k}^{(n-1)}, \boldsymbol{b}^{(n-1)}).$$

$$\mathcal{M}_{1}^{(n)} = \arg \max_{\mathcal{M}_{1}} \mathcal{L}_{\mathcal{Y},\Omega}(\mathcal{C}^{(n)}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{k}^{(n-1)}, \boldsymbol{b}^{(n-1)}).$$

$$\vdots$$

$$\mathcal{M}_{K}^{(n)} = \arg \max_{\mathcal{M}_{K}} \mathcal{L}_{\mathcal{Y},\Omega}(\mathcal{C}^{(n)}, \mathcal{M}_{1}^{(n)}, \cdots, \mathcal{M}_{k}, \boldsymbol{b}^{(n-1)}).$$

$$\boldsymbol{b}^{(n)} = \arg \max_{\boldsymbol{b}} \mathcal{L}_{\mathcal{Y},\Omega}(\mathcal{C}^{(n)}, \mathcal{M}_{1}^{(n)}, \cdots, \mathcal{M}_{k}^{(n)}, \boldsymbol{b}).$$

end

A 3 >

Simulations

- The decay in the error appears to behave on the order of d^{-2} when K = 3.
- A larger estimation error is observed when the signal is too small or large.
- There is a big improvement from L = 2 to $L \ge 3$.

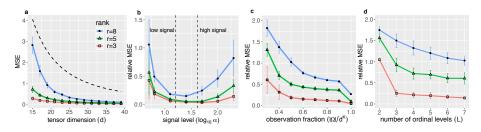
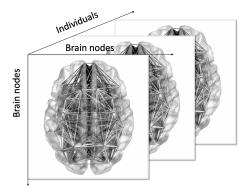


Figure: the relative MSE = $\|\hat{\Theta} - \Theta^{true}\|_F / \|\Theta^{true}\|_F$ for better visualization.

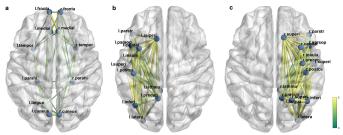
.

- An ordinal tensor consisting of structural connectivities among 68 brain nodes for 136 individuals.
- Each entry $y_{\omega} \in \{\text{high}, \text{moderate}, \text{low}\}.$

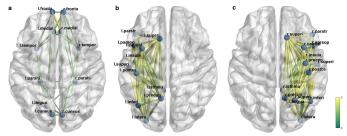


• The clustering based on the estimated $\hat{\Theta}$ identifies 11 (3+8) clusters among 68 brain nodes.

- The clustering based on the estimated $\hat{\Theta}$ identifies 11 (3+8) clusters among 68 brain nodes.
- The top three clusters capture the global separation among brain nodes.



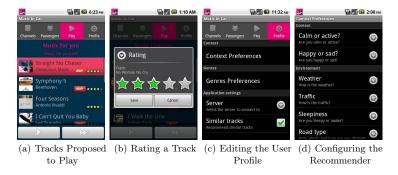
- The clustering based on the estimated $\hat{\Theta}$ identifies 11 (3+8) clusters among 68 brain nodes.
- The top three clusters capture the global separation among brain nodes.



• The small clusters represent local regions driving by similar nodes.

Data application: InCarMusic

- A tensor recording the ratings of 139 songs from 42 users on 26 contexts (Baltrunas et al., 2011).
- Each entry is a rating on a scale of 1 to 5 ($y_{\omega} \in \{1, 2, 3, 4, 5\}$).



イロト イポト イヨト イヨト **ICML 2020**

Data application: HCP, InCarMusic

• Our method achieves lower prediction error than others.

Method		Ordinal-T (ours)	Continuous-T	1bit-sign-T
НСР	MAD	0.1607 (0.005)	0.2530 (0.0002)	0.3566 (0.0010)
	MCR	0.1606 (0.005)	0.1599 (0.0002)	0.1563 (0.0010)
InCarMusic –	MAD	1.37 (0.039)	2.39 (0.152)	1.39 (0.003)
	MCR	0.59 (0.009)	0.94 (0.027)	0.81 (0.005)

Table: Comparison of prediction error based on cross-validation (10 repetitions, 5 foldes). Standard errors are reported in parentheses. MAD: mean absolute error; MCR: misclassification error.

Summary

- We propose a cumulative probabilistic model for ordinal tensor observations.
- The model achieves optimal convergence rate and nearly optimal sample complexity.
- The model has good interpretation and prediction performance in HCP and InCarMusic application.
- Thank you!
- Preprint: https://arxiv.org/abs/2002.06524
- Software: https://cran.r-project.org/web/packages/tensorordinal/index.html

Э

- 4 回 ト 4 ヨ ト 4 ヨ ト