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Introduction: what is a tensor?

I Tensors are generalizations of vectors and matrices:

I We focus on tensors of order 3 or greater, also called higher-order tensors.

I Denote an order-K(d1, · · · , dK) dimensional tensor as Y = JyωK ∈ Rd1×···×dK

where ω ∈ [d1]× · · · × [dK ].
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Introduction: Tucker decomposition
I Tucker decomposition

I Generalization of matrix SVD to higher orders.
I X = C ×1 M1 ×2 M2 ×3 M3.
I Tucker rank of an order-3 tensor is defined as

r(X ) = (r1, r2, r3).

I Degree of freedom (the number of parameters) is

∑
k

(dk − rk)rk +
∏

k

rk ≈ O

(∑
k

dk

)
when rk = O(1).
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Introduction: tensor data in applications
I Tensor in genomics.

I Tensor in neuroimaging.
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Introduction: ordinal tensor data in applications
I Tensor in recommendation system (Baltrunas et al., 2011).
I Each entry yω ∈ {1, 2, 3, 4, 5} InCarMusic: Context-Aware Music Recommendations in a Car 93

(a) Tracks Proposed
to Play

(b) Rating a Track (c) Editing the User
Profile

(d) Configuring the
Recommender

Fig. 2. InCarMusic user interface (cont)

used in two consecutive phases, for simulating situations occurring in a car. In
the first phase, the users were asked to evaluate the effect of certain contex-
tual conditions on the propensity to listen to music of a particular genre, while
in the second phase the users entered ratings for tracks assuming that certain
contextual conditions hold (see below for more details).

4.1 Context Model and Music Track Corpus

In order to understand the influence of context on the music preferences of car
passengers, context was modeled as a set of independent contextual factors. The
factors are assumed to be independent in order to get a tractable mathematical
model. This assumption, even if it is clearly false, as in other probabilistic models
such as the naive Bayes classifier, still does not prevent the generation of reliable
rating predictions. We identified the following factors and their possible values,
contextual conditions, as potentially relevant for in car music recommendations:

Contextual Factor Contextual Conditions
driving style (DS) relaxed driving, sport driving
road type(RT) city, highway, serpentine
landscape (L) coast line, country side, mountains/hills, urban
sleepiness (S) awake, sleepy
traffic conditions (TC) free road, many cars, traffic jam
mood (M) active, happy, lazy, sad
weather (W) cloudy, snowing, sunny, rainy
natural phenomena (NP) day time, morning, night, afternoon

Music tracks were of ten different genres. We observe that there is no uni-
fied music genre taxonomy, and we have chosen to use the genres defined in
[12]: classical, country, disco, hip hop, jazz, rock, blues, reggae, pop and metal.
For phase one, i.e., the relevance assessment of different contextual factors,
five representative tracks per genre were manually selected. This resulted in

I Tensor in networks (Human Connectome Project (HCP)).
I Each entry yω ∈ {high,moderate, low}.
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Tensor-based learning is an active but challenging field

I Tensor decomposition (Anandkumar et al, JMLR’14; Wang and Song, AIS-
TATS’17; Han and Zhang, JASA’19).

I Tensor regression (Zhou et al JASA’13; Chen, Raskutti, and Yuan,JMLR’20;
Xu, Hu and Wang’19).

I Tensor denoising (Wang and Li’18; Hong, Kolda, and Duersch, SIAM
AR’19; Zeng and Wang, NeurlIPS’19).

I Tensor completion (Montanari and Sun, CPAM’16; Zhang AOS’19; Gha-
dermarzy, Plan and Yilmaz, I&A’19).

No existing method is able to analyze oridnal-valued tensors.
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Motivating problems

I How can we fill the missing ordinal values from the available tensor data?

I How many ordinal samples do we need to complete the tensor?

I This talk is based on: L. and M. Wang. Tensor denoising and completion
based on ordinal observations. arXiv:2002.06524, 2020.
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Probabilistic model

I Goal: learn a probabilistic tensor from multi-way ordinal observations.
I Two key properties needed for a reasonable model.

1. The model should be invariant under a reversal of categories

like ≺ neutral ≺ dislike⇐⇒ like � neutral � dislike.

2. The parameter interpretations should be consistent under merging or splitting
of contiguous categories.

I Continuous tensor model lacks the first property.

I Binary tensor model lacks the second property.
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Probabilistic model
Proposal: a cumulative link model.
I [L] = {1, 2, · · · , L} denotes the ordinal level.
I Let Y = JyωK ∈ [L]d1×···×dK be an ordinal tensor. The entries yω are

independently distributed with cumulative probabilities:

P(yω ≤ `|b,Θ) = f(b` − θω), for all ` ∈ [L− 1]. (1)

ex) f(x) = ex

1+ex is a logistic link.
I The additive, cumulative model enjoys two key properties for ordinal tensor

data.
I If f is a cumulative function,

P(yω = `) = f(b` − θω)− f(b`−1 − θω) = P(b`−1 < y∗ω ≤ b`),

where εω
i.i.d∼ f and y∗ω = θω + εω.
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Latent variable interpretation
I We can interpret the ordinal tensor model (1) as an L-level quantization

model.

I Given intervals from the cut-off points vector b.
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Probabilistic model: assumptions on f

I The link function is assumed to satisfy:
I f(θ) is strictly increasing and twice-differentiable in θ.
I f ′(θ) is strictly log-concave and symmetric with respect to θ = 0.

I Many cumulative functions satisfy the above two assumptions.
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Probabilistic model: assumptions on Θ

I The parameter Θ admits the Tucker decomposition:

Θ = C ×1 M1 ×1 · · · ×K MK ,

where C ∈ Rr1×···rK is a core tensor, Mk ∈ Rdk×rk are factor matrices.

I Entries of Θ are uniformly bounded in magnitude by a constant α ∈ R+.
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Rank constrained M-estimation
I Let Ω ⊂ [d1]× · · · × [dK ] denote the set of observed indices.

Ω could be the full set or incomplete set (for completion).
I The log-likelihood associated with the observations is

LY,Ω(Θ, b) =
∑
ω∈Ω

∑
`∈[L]

{
1{yω=`} log

[
f(b` − θω)− f(b`−1 − θω)

]}
.

I We propose a rank-constrained maximum likelihood estimation for Θ.

(Θ̂, b̂) = arg max
Θ∈P,b∈B

LY,Ω(Θ, b) where,

P = {Θ ∈ Rd1×···×dK : rank(P) ≤ r, ‖Θ‖∞ ≤ α, 〈Θ,J 〉 = 0︸ ︷︷ ︸
identifiability condition

},

B = {b ∈ RL−1 : ‖b‖∞ ≤ β, min
`

(b` − b`−1) ≥ ∆}.

Here, J = J1K ∈ Rd1×···×dK denotes a tensor of all ones.
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Algorithm
I The rank r is unknown =⇒ Bayesian information criterion (BIC).
I Non-convex problem =⇒ Alternating optimization approach.

I Let LY,Ω(C,M1, · · · ,MK , b) = LY,Ω(Θ, b).

Algorithm 1: Alternating optimization
Result: Estimated Θ, together with core tensor and factor matrices
Random initialization;
Repeat until converge;

C(n) = arg maxC LY,Ω(C,M(n−1)
1 , · · · ,M(n−1)

k , b(n−1)).
M(n)

1 = arg maxM1 LY,Ω(C(n),M1, · · · ,M(n−1)
k , b(n−1)).

...
M(n)

K = arg maxMK
LY,Ω(C(n),M(n)

1 , · · · ,Mk, b
(n−1)).

b(n) = arg maxb LY,Ω(C(n),M(n)
1 , · · · ,M(n)

k , b).
end

I There is no guarantee on global optimality.
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Algorithm

I However, our theoretical results hold as long as LY,Ω(Θ̂) ≥ LY,Ω(Θtrue).

I The algorithm performs well in simulations and data applications.
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Theoretical results: tensor denoising

I Tensor denoising:
I (Q1) How accurately can we estimate the latent signal tensor Θ from the

ordinal observation Y?

I (A1) Let us define MSE(Θ̂,Θtrue) = 1∏
k

dk

‖Θ̂−Θtrue‖2F .

Statistical convergence (L. and Wang, 2020)

With very high probability, our estimator Θ̂ satisfies

MSE(Θ̂,Θtrue) ≤ min
(

4α2, c1r
K−1
max

∑
k
dk∏

k
dk

)
,

where c1 = c(f,K) > 0 is a constant.

I We also have general results for incomplete data, or unknown b cases.
unknown b case
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Theoretical results: tensor denoising

I Tensor denoising:
I (Q1’) Is this bound optimal?

I (A1’)

Minimax lower bound (L. and Wang, 2020)

Under some mild technical conditions,

inf
Θ̂∈P

sup
Θtrue∈P

P
{

MSE(Θ̂,Θtrue) ≥ cmin
(
α2, Crmax

dmax∏
k
dk

)}
≥ 1

8 ,

where C = C(α,L, f, b) > 0 and c > 0 are constants independent of tensor
dimension and the rank.

I So our estimation bound is rate-optimal.
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Theoretical results: tensor completion

I Tensor completion:
I (Q2) How many sampled entries do we need to consistently recover Θ?

I (A2) Let us define ‖Θ− Θ̂‖2F,Π =
∑

ω∈[d1]×···×[dK ] πω(Θω − Θ̂ω)2.

Sample complexity (L. and Wang, 2020)

Let {yω}ω∈Ω be the ordinal observation, where Ω is chosen at random with
replacement according to a probability distribution Π. Then, with very high
probability,

‖Θ− Θ̂‖2F,Π → 0, as |Ω|∑
k
dk
→∞.

I We allow both uniform and non-uniform sampling.
I The number of free parameters is roughly on the order of

∑
k
dk.

I The sample complexity |Ω| � O(
∑

k
dk) is almost optimal.
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Theoretical results: summary

I Let Y ∈ Rd×···×d be an order-K, L-level ordinal tensor.

Bhaskar (2016) Ghadermarzy et al. (2018) This paper
Higher-order tensors (K ≥ 3) 7 3 3

Multi-level categories (L ≥ 3) 3 7 3

Error rate for tensor denoising d−1 for K = 2 d−(K−1)/2 d−(K−1)

Optimality guarantee unkonwn 7 3

Sample complexity for completion dK Kd Kd
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Simulations
I The decay in the error appears to behave on the order of d−2.
I A larger estimation error is observed when the signal is too small or large.
I There is a big improvement from L = 2 to L ≥ 3.

a b

c d

●

●

●

●
●

●
● ● ● ● ● ● ●

0

1

2

3

4

15 20 25 30 35 40

tensor dimension (d)

M
S

E

rank
●

r=3
r=5
r=8

●

●

●
●

●

●

●

0.0

0.5

1.0

1.5

1.0 1.5 2.0

signal level (log10 α)

re
la

tiv
e

 M
S

E

low signal high signal

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

0.0

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0

(Ω dK)

re
la

tiv
e

 M
S

E

●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

2 3 4 5 6 7
(L)

re
la

tiv
e

 M
S

E

number of ordinal levelsobservation fraction

Figure: the relative MSE = ‖Θ̂−Θtrue‖F /‖Θtrue‖F for better visualization.
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Simulations
I We compare our method to other 4 alternatives.
I Our method outperforms across a range of missingness and ordinal levels.
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Data application: Human Connectome Project (HCP)
I An ordinal tensor consisting of structural connectivities among 68 brain

nodes for 136 individuals (Van Essen et al., 2013).

I Each entry yω ∈ {high,moderate, low}.

22 / 26



Data application: Human Connectome Project (HCP)

I The BIC suggests r = (23, 23, 8).

I The clustering based on the estimated Θ̂ identifies 11 (3+8) clusters among
68 brain nodes. clustering

I The top three clusters capture the global separation among brain nodes.
a b c

I The small clusters represent local regions driving by similar nodes.
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Data application: InCarMusic

I An tensor recording the ratings from 42 users to 139 songs on 26 con-
texts (Baltrunas et al., 2011).

I Each entry is a rating on a scale of 1 to 5 (yω ∈ {1, 2, 3, 4, 5}).
InCarMusic: Context-Aware Music Recommendations in a Car 93

(a) Tracks Proposed
to Play

(b) Rating a Track (c) Editing the User
Profile

(d) Configuring the
Recommender

Fig. 2. InCarMusic user interface (cont)

used in two consecutive phases, for simulating situations occurring in a car. In
the first phase, the users were asked to evaluate the effect of certain contex-
tual conditions on the propensity to listen to music of a particular genre, while
in the second phase the users entered ratings for tracks assuming that certain
contextual conditions hold (see below for more details).

4.1 Context Model and Music Track Corpus

In order to understand the influence of context on the music preferences of car
passengers, context was modeled as a set of independent contextual factors. The
factors are assumed to be independent in order to get a tractable mathematical
model. This assumption, even if it is clearly false, as in other probabilistic models
such as the naive Bayes classifier, still does not prevent the generation of reliable
rating predictions. We identified the following factors and their possible values,
contextual conditions, as potentially relevant for in car music recommendations:

Contextual Factor Contextual Conditions
driving style (DS) relaxed driving, sport driving
road type(RT) city, highway, serpentine
landscape (L) coast line, country side, mountains/hills, urban
sleepiness (S) awake, sleepy
traffic conditions (TC) free road, many cars, traffic jam
mood (M) active, happy, lazy, sad
weather (W) cloudy, snowing, sunny, rainy
natural phenomena (NP) day time, morning, night, afternoon

Music tracks were of ten different genres. We observe that there is no uni-
fied music genre taxonomy, and we have chosen to use the genres defined in
[12]: classical, country, disco, hip hop, jazz, rock, blues, reggae, pop and metal.
For phase one, i.e., the relevance assessment of different contextual factors,
five representative tracks per genre were manually selected. This resulted in
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Data application: HCP, InCarMusic

I Our method achieves lower prediction error than others.

Method Ordinal-T (ours) Continuous-T 1bit-sign-T

HCP
MAD 0.1607 (0.005) 0.2530 (0.0002) 0.3566 (0.0010)
MCR 0.1606 (0.005) 0.1599 (0.0002) 0.1563 (0.0010)

InCarMusic
MAD 1.37 (0.039) 2.39 (0.152) 0.59 (0.003)
MCR 0.59 (0.009) 0.94 (0.027) 0.81 (0.005)

Table: Comparison of prediction error based on cross-validation (10 repetitions,
5 foldes). Standard errors are reported in parentheses. MAD: mean absolute
error; MCR: misclassification error.
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Summary

I We propose a cumulative probabilistic model for ordinal tensor observa-
tions.

I The model achieves optimal convergence rate and nearly optimal sample
complexity.

I The model has good interpretation and prediction performance in HCP
and InCarMusic application.

I Future work:
I Analysis of algorithmic error (global vs local).
I Robustness of the model.

I Thank you!

I L. and M. Wang. Tensor denoising and completion based on ordinal ob-
servations. arXiv:2002.06524, 2020.
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Unknown b case
I We make the following assumptions about the link function.

Assumption 1

The link function f : R 7→ [0, 1] satisfies the following properties:

1. f(z) is twice-differentiable and strictly increasing in z.

2. ḟ(z) is strictly log-concave and symmetric with respect to z = 0.

I We define the following constants that will be used in the theory:

Cα,β,∆ = max
|z|≤α+β

max
z′≤z−∆
z′′≥z+∆

max
{

ḟ(z)
f(z)− f(z′) ,

ḟ(z)
f(z′′)− f(z)

}
,

Dα,β,∆ = max
|z|≤α+β

max
z′≤z−∆
z′′≥z+∆

max
{
− ∂

∂z

(
ḟ(z)

f(z)− f(z′)

)
,
∂

∂z

(
ḟ(z)

f(z′′)− f(z)

)}
,

Aα,β,∆ = min
|z|≤α+β

min
z′≤z−∆

(f(z)− f(z′)) .
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Unknown b case

I We have the following theorem corresponding to Theorem 1 in known b

case.

Theorem 1 (Statistical convergence with unknown b)

With very high probability,

MSE
(

Θ̂,Θtrue
)
≤ min

(
4α2, c1r

K−1
max

L− 1 +
∑
k dk

(L− 1)
∏
k dk

)
,

and
MSE

(
b̂, btrue

)
≤ min

(
4β2, c1r

K−1
max

L− 1 +
∑
k dk

(L− 1)
∏
k dK

)
,

where c1, Cα,β,∆, Dα,β,∆ are positive constants independent of the tensor
dimension, rank, and number of ordinal levels.
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Clustering method

I In matrices case,
1. Perform singular value decomposition,

X = UΣV T ,

where Σ is a diagonal matrix and U, V are factor matrices with orthogonal
columns.

2. Take each column of V as a principal axis and each row in UΣ as principal
component.

3. A subsequent multivariate clustering method (such as K-means) is then ap-
plied to the m rows of UΣ.
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Clustgering method

I In tensors case,
1. Perform Tucker decompostion,

Θ̂ = Ĉ ×1 M̂1 ×2 · · · ×K M̂K , (2)

2. The mode-k matricization of (2) gives

Θ̂(k) = M̂kĈ(k)
(
M̂K ⊗ · · · ⊗ M̂1

)
,

3. Take each column in
(
M̂K ⊗ · · · ⊗ M̂1

)
as principal axis and each row in

M̂kĈ(k) as principal component.
4. A subsequent multivariate clustering method (such as K-means) is then ap-

plied to the dk rows of the matrix M̂kĈ(k).
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