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Introduction: what is a tensor?

» Tensors are generalizations of vectors and matrices:
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Scalar component Vector Matrix Tensor
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» We focus on tensors of order 3 or greater, also called higher-order tensors.

» Denote an order-K (dy, - - - , dx ) dimensional tensor as Y = [y,,] € R% > xdx

where w € [dq] X -+ X [dk].
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Introduction: Tucker decomposition

» Tucker decomposition
> Generalization of matrix SVD to higher orders.
> X:CX1M1 XQMQ ><3M3.

» Tucker rank of an order-3 tensor is defined as
r(X) = (r1,r2,r3).
» Degree of freedom (the number of parameters) is
Z(dk = Tk)Tk + Hrk ~O0 <Z dk> when 7, = O(1).
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Introduction: tensor data in applications

» Tensor in genomics.

individuals

genes

» Tensor in neuroimaging.

Patient 1 Patient 2 Control . .
Brain Imaging Data
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brain region

brain region
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Introduction: ordinal tensor data in applications

» Tensor in recommendation system (Baltrunas et al., 2011).

» Each entry y, € {1,2,3,4,5}

(a) Tracks Proposed (b) Rating a Track (c) Editing the User (d) Configuring the
to Play Profile Recommender

» Tensor in networks (Human Connectome Project (HCP)).

» Each entry y,, € {high, moderate, low}. e
e

Brain nodes

Brain nodes
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Tensor-based learning is an active but challenging field

» Tensor decomposition (Anandkumar et al, JMLR'14; Wang and Song, AlS-
TATS'17; Han and Zhang, JASA'19).

» Tensor regression (Zhou et al JASA'13; Chen, Raskutti, and Yuan,JMLR'20;
Xu, Hu and Wang'19).

» Tensor denoising (Wang and Li'18; Hong, Kolda, and Duersch, SIAM
AR'19; Zeng and Wang, NeurllPS'19).

» Tensor completion (Montanari and Sun, CPAM'16; Zhang AOS’'19; Gha-
dermarzy, Plan and Yilmaz, 1&A'19).

No existing method is able to analyze oridnal-valued tensors.
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Motivating problems

» How can we fill the missing ordinal values from the available tensor data?

» How many ordinal samples do we need to complete the tensor?

| | I like | Neutral
Like
Dislike | Neutral [ Like Like
ike |Dislike
Like Dislike ike | Dislike
ike
Neutral ral
ral | Neutral
Dislike Like

» This talk is based on: L. and M. Wang. Tensor denoising and completion
based on ordinal observations. arXiv:2002.06524, 2020.
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Probabilistic model

» Goal: learn a probabilistic tensor from multi-way ordinal observations.
» Two key properties needed for a reasonable model.

1. The model should be invariant under a reversal of categories
like < neutral < dislike <= like > neutral > dislike.

2. The parameter interpretations should be consistent under merging or splitting

of contiguous categories.
» Continuous tensor model lacks the first property.

» Binary tensor model lacks the second property.
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Probabilistic model
Proposal: a cumulative link model.
» [L] ={1,2,---, L} denotes the ordinal level.
> Let ¥V = [y,] € [L]%* <95 be an ordinal tensor. The entries y,, are

independently distributed with cumulative probabilities:
P(y, < £b,©) = f(by —0,), forall£e[L—1]. (1)

ex) f(z) = 1_?% is a logistic link.
» The additive, cumulative model enjoys two key properties for ordinal tensor
data.

» If fis a cumulative function,
Py, =€) = f(be — 0,) — f(be—1 — 0u) = P(be—1 < y;, < by),

where ¢, il fand yl =0, + e,
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Latent variable interpretation

» We can interpret the ordinal tensor model (1) as an L-level quantization

model.

&

signal tensor i.i.d. noise latent continuous-valued tensor

» Given intervals from the cut-off points vector b.

2018 10§

1, ifyl € (—o0,b1],

2, ifys € (by,bol,
Yo = § . i

y L, ify; € (bp—1,00),

10/26



Probabilistic model: assumptions on f

» The link function is assumed to satisfy:

> f(0) is strictly increasing and twice-differentiable in 6.

> f'(0) is strictly log-concave and symmetric with respect to 6 = 0.

» Many cumulative functions satisfy the above two assumptions.
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Probabilistic model: assumptions on ©

» The parameter © admits the Tucker decomposition:

@:CX1M1 xl"'XKMK,

where C € R"1%"""K s a core tensor, M, € R X"« are factor matrices.

» Entries of © are uniformly bounded in magnitude by a constant o € R;..
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Rank constrained M-estimation

» Let  C [dy] x --- X [dk]| denote the set of observed indices.
Q could be the full set or incomplete set (for completion).

» The log-likelihood associated with the observations is
£y.0(0,6) = > 3 {1y —0ylog [£(be — 0) = flbe1 —0.)] }-
weQ Le(L)

» We propose a rank-constrained maximum likelihood estimation for ©.
(©,b) = argmax Ly o(0,b)  where,
©cP,beB

P ={0 c RW*XIx: rank(P) <7, |O]|o <, (0,7)=0 1},
—_———
identifiability condition

B={be R b < 8, min(bs — by 1) > A,

Here, J = [1] € R%**dx denotes a tensor of all ones.
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Algorithm

» The rank 7 is unknown = Bayesian information criterion (BIC).

» Non-convex problem = Alternating optimization approach.

> Let Ly o(C, M1, -+, Mk, b) = Ly a(6,b).

Algorithm 1: Alternating optimization

Result: Estimated ©, together with core tensor and factor matrices
Random initialization;
Repeat until converge;
C(") = arg max, Ey’Q(C,Mg’“l), ax ,M,(Cnil), b)),
M&”) = argmax Ly a(C™ My, --- ,M,(Cnil), b(n—1).

M(I?) — argmax . £y7Q(C(n),M§n)v Ce 7Mk,b(n71)).
b(™) = arg max, ﬁy,gz(c(n), Mg"), e ’Mén)’ b).
end

» There is no guarantee on global optimality.
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Algorithm

> However, our theoretical results hold as long as Ly o(©) > Ly o ().

» The algorithm performs well in simulations and data applications.

— Setting

~e= d=25,r=10 (4.18 secfiter)
-2.0- ~a= d=25r=5 (2.30 secfiter)

== d=30,r=10 (7.17 secliter)
=+ d=30,r=5 (4.63 sec/iter)

loglikelihood x 10*

-3.0- ' ' '

iteration
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Theoretical results: tensor denoising

» Tensor denoising:

> (Q1) How accurately can we estimate the latent signal tensor © from the

ordinal observation )7
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Theoretical results: tensor denoising

» Tensor denoising:

> (Q1) How accurately can we estimate the latent signal tensor © from the
ordinal observation )7
> (A1) Let us define MSE(©, 0%"¢) = 1 ||© — ©'¢||.

Ilk;dk
Statistical convergence (L. and Wang, 2020)

With very high probability, our estimator © satisfies

K—1 Zk dk)

C1Tmax
Hk dk

MSE(6, 0"") < min <4a2,

where ¢; = ¢(f, K) > 0 is a constant.

» We also have general results for incomplete data, or unknown b cases.
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Theoretical results: tensor denoising

» Tensor denoising:
> (Q1’) Is this bound optimal?
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Theoretical results: tensor denoising

» Tensor denoising:
> (Q1’) Is this bound optimal?
> (A1)

Minimax lower bound (L. and Wang, 2020)

Under some mild technical conditions,

N A 1
inf su P{MSE 6,0 > cmin [ o, Crmax — } > =,
2 3 ( )2 < Hk dk) -8

OcP @truecp
where C = C(a, L, f,b) > 0 and ¢ > 0 are constants independent of tensor
dimension and the rank.

» So our estimation bound is rate-optimal.
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Theoretical results: tensor completion

» Tensor completion:

» (Q2) How many sampled entries do we need to consistently recover ©7
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Theoretical results: tensor completion

» Tensor completion:

» (Q2) How many sampled entries do we need to consistently recover ©7
> (A2) Let us define ||© — O||3 1 = Zwe[dl]x'ux[dm 7w (On — 0,)2.

Sample complexity (L. and Wang, 2020)

Let {yw}weo be the ordinal observation, where € is chosen at random with

replacement according to a probability distribution II. Then, with very high
probability,

1
Zk dk’

» We allow both uniform and non-uniform sampling.

|© —6|Fn —0, as

— OQ.

» The number of free parameters is roughly on the order of Zk dy;.
> The sample complexity |Q > O(} ", dy) is almost optimal.
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Theoretical results: summary

> Let ) € R *d he an order-K, L-level ordinal tensor.

Bhaskar (2016) Ghadermarzy et al. (2018)  This paper
Higher-order tensors (K > 3) X 4 4
Multi-level categories (L > 3) 4 X 4
Error rate for tensor denoising d=! for K =2 d-(K-1)/2 d—(K-1)
Optimality guarantee unkonwn X v
Sample complexity for completion X Kd Kd
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Simulations

» The decay in the error appears to behave on the order of d—2.

» A larger estimation error is observed when the signal is too small or large.

» There is a big improvement from L =2 to L > 3.
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Simulations

» We compare our method to other 4 alternatives.

» Our method outperforms across a range of missingness and ordinal levels.
b
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Data application: Human Connectome Project (HCP)

» An ordinal tensor consisting of structural connectivities among 68 brain
nodes for 136 individuals (Van Essen et al., 2013).

» Each entry y,, € {high, moderate, low}.

Brain nodes
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Data application: Human Connectome Project (HCP)

» The BIC suggests r = (23,23, 38).

> The clustering based on the estimated © identifies 11 (3+38) clusters among

68 brain nodes.
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Data application: Human Connectome Project (HCP)

» The BIC suggests r = (23,23, 8).

» The clustering based on the estimated © identifies 11 (3+38) clusters among
68 brain nodes.

» The top three clusters capture the global separation among brain nodes.




Data application: Human Connectome Project (HCP)

» The BIC suggests r = (23,23, 8).

» The clustering based on the estimated © identifies 11 (3+38) clusters among
68 brain nodes.

» The top three clusters capture the global separation among brain nodes.
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Data application: InCarMusic

» An tensor recording the ratings from 42 users to 139 songs on 26 con-
texts (Baltrunas et al., 2011).

» Each entry is a rating on a scale of 1 to 5 (y,, € {1,2,3,4,5}).

DG 6230 P BE@ 1:10Am DE® 11:320 P
Music In Car

R @ 2:08em
y__ Profile Calm or active?
Context Preferences Hapﬁy o s‘a(‘ﬁ
Genres Environment
Genres Preferences W‘Ea‘merv .
Application settings —
Server How s the traffic
Sleepiness
Similar tracl Are you sleepy or awake;
R Road type
(a) Tracks Proposed (b) Rating a Track (c) Editing the User (d) Configuring the
to Play Profile Recommender
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Data application: HCP, InCarMusic

» Our method achieves lower prediction error than others.

Method Ordinal-T (ours) | Continuous-T 1bit-sign-T
HCP MAD | 0.1607 (0.005) | 0.2530 (0.0002) | 0.3566 (0.0010)
MCR | 0.1606 (0.005) | 0.1599 (0.0002) | 0.1563 (0.0010)
[ MAD | 1.37(0.039) 2.39 (0.152) 0.59 (0.003)
InCarMusic
MCR |  0.59 (0.009) 0.94 (0.027) 0.81 (0.005)

Table: Comparison of prediction error based on cross-validation (10 repetitions,

5 foldes). Standard errors are reported in parentheses. MAD: mean absolute

error; MCR: misclassification error.
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Summary

>

We propose a cumulative probabilistic model for ordinal tensor observa-

tions.

The model achieves optimal convergence rate and nearly optimal sample
complexity.

The model has good interpretation and prediction performance in HCP
and InCarMusic application.

Future work:

> Analysis of algorithmic error (global vs local).

» Robustness of the model.

» Thank you!

» L. and M. Wang. Tensor denoising and completion based on ordinal ob-

servations. arXiv:2002.06524, 2020.
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Unknown b case
» We make the following assumptions about the link function.
Assumption 1
The link function f: R — [0, 1] satisfies the following properties:

1. f(z) is twice-differentiable and strictly increasing in z.

2. f (2) is strictly log-concave and symmetric with respect to z = 0.

» We define the following constants that will be used in the theory:

= max max max f(z) f(Z) }
Copar = Joax, Jpox, ma \Fo—Fe T T )
2" >z4A
= X X X 72 f(Z)) a(f(Z))}
Dasa fézw;?jigma{ 5 (7)o (-1

A _ . . . Y
aps = min o min (f(2) = f(z))
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Unknown b case
» We have the following theorem corresponding to Theorem 1 in known b
case.

Theorem 1 (Statistical convergence with unknown b)

With very high probability,

R ) G L—1+4>, di
E true ) - 4 2 K-1 k
MS (@,@ ) _mln( o, C1Tmax T =D, d ),

and

~ . s L—-1+ Z dy,
true ) - 2 K-1 k
MSE (b, b ) < min (45 ) ClT s T=DIL dK) ,

where c1,Co 8.0, Da,g A are positive constants independent of the tensor

dimension, rank, and number of ordinal levels.



Clustering method

» In

matrices case,

. Perform singular value decomposition,

X =Uxsv7?,

where ¥ is a diagonal matrix and U,V are factor matrices with orthogonal

columns.

. Take each column of V' as a principal axis and each row in UX as principal

component.

. A subsequent multivariate clustering method (such as K-means) is then ap-

plied to the m rows of UX.
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Clustgering method

» In tensors case,

1. Perform Tucker decompostion,
©=0Cx1 My x3++ xxg Mg, (2)
2. The mode-k matricization of (2) gives
é(k) = Mké(k) (MK Q& Ml) )

3. Take each column in (MK ®~~~®M1) as principal axis and each row in
Mk(f<k) as principal component.
4. A subsequent multivariate clustering method (such as K-means) is then ap-

plied to the di rows of the matrix Mké(k).
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