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“Problem” & Existing methods

Problems: Let {(X},y;,) € R4 x {—-1.1}: ¢ =1,...,n} de-

note an i.i.d. sample from an unknown distribution X" x ).

e Classification: How to efficiently classify high-dimensional
matrices with limited sample size:

n < dydy = dimension of feature space?’

e Regression: How to robustly predict the label probability when
little is known about the function form of p(X):

p(X) =€ Py = 1]X)?

Existing methods:

e Classification: Decision tree, nearest neighbor, neural net-
work, and support vector machine. However, most methods
have focused on vector-valued features.

e Regression: Logistic regression and linear discriminant anal-
ysis. However, it is often difficult to justify the assumptions on
the function form, especially when the feature space is high-
dimensional.

Goal: We propose a nonparametric learning approach with
maitrix-valued predictors. Unlike classical approaches, our ap-
proach uses classification rule to address regression problem.
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Classification Regression

Classification with matrix predictors

e \We develop a large-margin classifier for matrix predictors.

oy

1
f:argmm—ZL(yif(Xi))+)\J(f). (1)
fer T4
eWeset F = {f: f(-) = (B,-) whererank(B) < r,||B|lr <
C}, J(f) = ||B||%, and we choose L(t) to be a large-margin

loss, such as hinge loss, logistic loss, etc.

e \We also develop nonlinear classifiers for matrix predictors us-
iIng a new family of matrix-input kernels.
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A large margin classifier for vector predictors
(Picture source: Wiki).

Regression with matrix predictors

Application: Probability matrix estimation

e We propose a nonparametric functional estimation method using a se-
guence of weighted classifiers from (1),

. I
fr = ugmin 2 we(yi) L(yi (X)) + A (f),

where w.(y)=1—mify=1landrify = —1.
e The main idea is to estimate p(X) through two steps of approximations:

p(X)

Step1 1 h
N — 1< X:pX)<—
i { p( )_H}
he[H|

Step2 1

H
he|H|

where H is a smooth parameter.

2

e Step 1 is discretization of the target function by level sets.

probability value

Ao p(x)

feature space

e Step 2 is decision region estimation using a sequence of weighted clas-
sifiers.

1{x: sign [ﬁT(X)} — 1 PPl X Py =1X) <7

N——— —
—
estimated decision region from classification targeted level set

e We provide accuracy guarantees for the above two steps by extending
theories in [2] from vectors to high-dimensional matrix predictors.

e We develop an alternating optimization to solve non-convex problem (1).
e We factor the coefficient matrix B = UV where (U, V) € R4*" x R%X"

Algorithm 1: Classification algorithm with matrix predictors

Input: (X1,41), -+, (X, yn), and prespecified rank r
Initialize: (U, V©)) ¢ Réxr x Rdzx"
Do until converges
Update U fixing V :
U =argming -y, (1—-({UVT, X@>)+ + A UVT|%.
Update V fixing U :
V =argminy >0, (1-(UVT, X;))  + AUV
Output: f(X)=(UVT, X)

e Our method leads itself well to probability matrix estimation problems.

e Goal: Estimate the probability matrix P = [p;;] € |0, 1] from binary ob-
servations Y = [y;;] € {0, 1}, where y;, i Ber(p;;) for (i, 7) € |di] x |da).
-Training set: {(Xijayij): (Z,]) c [dl] X [dg]} where

1 if (p,q) = (i, ),

Xiilpg = X
Kiil \O otherwise,

is an indicator matrix with 1 at (¢, ) — th position and 0’s everywhere.
e We apply our developed methods to estimate p;; = P(y;; = 1/X;;).

true probability binary observation nonparametric estimation parametric estimation
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e Our nonparametric approach provides more robust matrix estimation
than parametric approaches [1, 3].

Theoretical results

Theorem 1. Assume that { X;}"_, is a set of i.i.d. Gaussian random matri-

ces with bounded variance. Then with high probability,

PlY £ sign( f(X))] — P[Y # sign(f*(X)]] < Y. T%* L)

where f* Is the best predictor in F.

Theorem 2. Letp: R4*% — [0, 1] be the estimated probability function from
our method. Under some assumptions on the function class F, the penalty
parameter \, and the smoothing parameter H, we have

; _ log (n/r(dy + dy))\ /"
p—pli=0 (( S ) ) |

where « is a reqularity parameter determined by the true probability func-
tion. Ifa« > 1 and dy = d, = d, we have

ﬁ—p‘hO(

K

K

log (n/rd)
(n/rd) > |
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