Estimating smooth tensors with unknown permutations
Chanwoo Lee \(^1\) Miaoyan Wang \(^1\)
\(^1\)Department of Statistics, University of Wisconsin-Madison

Main Problem

We consider permuted tensor model,

\[Y = \Theta \circ \sigma + \xi, \]

where \(Y \in \mathbb{R}^{d_1 \times \ldots \times d_k} \) is an observed data tensor, \(\Theta \) is an unknown smooth signal tensor, \(\sigma \) is an unknown permutation, and \(\xi \) is a noise tensor consisting of zero-mean sub-Gaussian entries.

Main problem: how to estimate \(\Theta \circ \sigma \) from the observed data tensor \(Y \)?

Limitations of low-rank assumption

Low-rank models assume

\[\Theta \circ \sigma = \sum_{\ell=1}^{r} \lambda_{\ell} a_{\ell}^{(1)} \otimes \cdots \otimes a_{\ell}^{(d)}, \]

where \(\lambda_{\ell} \) is a scalar and \(a_{\ell}^{(d)} \in \mathbb{R}^d \) for all \((k, \ell) \in [m] \times [p] \).

However, low rank models are

- **Sensitive** to order-preserving transformation

\[\theta = \frac{1}{1 + \exp(-c(2Z))}, \]

where

\[Z = a^{(1)} + b^{(2)} + c^{(3)}. \]

- **Inadequate** for special structures.

\[\Theta = \log(1 + 2), \]

where

\[Z(i, j, k) = \frac{1}{d} \max(i, j, k). \]

Our main assumption

Instead, we assume there exists \(f : [0, 1]^m \rightarrow \mathbb{R} \) that satisfies

- **Representation:** \(\Theta(\omega) = f(\omega/d) \) for all \(\omega \in [d^m] \),

\[\| f(x) - f(y) \| \leq 1 \| x - y \|_m \]

for all \(x, y \in [0, 1]^m \), where the norm \(\| x \|_m = \sum_i |x_i|^m \) for \(x \in \mathbb{R}^m \).

Stochastic block approximation (SBA) to smooth tensor

Lemma (Block approximation). For any \(k < d \), there exists \(k \)-membership function \(z : [d] \rightarrow [k] \), and \(G \in \mathbb{R}^{d \times \cdots \times d} \) such that

\[\frac{1}{d^m} \sum_{\omega \in [d^m]} |(\Theta \circ \sigma)(\omega) - G(z(\omega))|^2 \leq \frac{m^2 L^2}{kn}. \]

Based on this lemma and algorithms in [2], we find the optimizer,

\[(\hat{z}, \hat{G}) = \arg \min_z \sum_{\omega \in [d^m]} |Y(\omega) - \hat{G}(z(\omega))|^2. \]

We estimate the \(\Theta \circ \sigma \) by

\[(\hat{\Theta} \circ \hat{\sigma})(\omega) = \hat{G}(\hat{z}(\omega)), \]

for all \(\omega \in [d^m] \).

Theoretical guarantees

Theorem (Mean square error). Let \(\hat{\Theta} \) be the estimator from (2) with the choice of \(k = \lceil d^m \rceil \). Then,

\[\frac{1}{d^m} \| (\hat{\Theta} \circ \hat{\sigma} - \Theta \circ \sigma) \|^2 \leq \frac{d^m}{n} \text{ Nonparametric rate} + \frac{\log d}{d^m n} \text{ Clustering rate}, \]

with high probability.

Remark: Depending on constants \(m \) and \(\alpha \), convergence rate becomes

\[
\text{RHS of (3)} \propto \begin{cases}
\frac{d^m}{m^2} & m = 2, \alpha \in (0, 1), \\
\frac{d^m}{m^2} & m = 2, \alpha = 1 \\
\frac{d^m}{m^2} & m > 2
\end{cases}
\]

Though SBA guarantees fast convergence rate, polynomial complexity algorithms for (1) are unknown.

Ongoing work: polynomial algorithms

Sort-And-Smooth (SAS) method extended from [1]

Under the monotonically increasing degree assumption on signal \(\Theta \),

\[\frac{1}{d^m-1} \sum_{\ell=1}^{d^m-1} \Theta(i, j, \ldots, m) > \frac{1}{d^m-1} \sum_{\ell=1}^{d^m-1} \Theta(j, \ell, \ldots, m), \]

for all \(i > j \).

Step 1 (sorting): Find \(\sigma \) so that the degree of \(\Theta \circ \sigma^{-1} \) is increasing.

Step 2 (smoothing): Estimate signal matrix \(\Theta = \text{Block} \{Y \circ \sigma^{-1}\} \),
where

Spectral method extended from [3]

Step 1 (Unfolding): Unfold \(Y \) into \(\text{Mat}(Y) \in \mathbb{R}^{m_1 \times \cdots \times m_d \times m'}. \)

Step 2 (SVD): Obtain SVD of \(\text{Mat}(Y) = \sum_{i=1}^{m'} \lambda_i v_i u_i^T \).

Step 3 (Thresholding): Obtain \(\hat{\Theta} = \sum_{i=1}^{m_k} \lambda_i v_i u_i^T \) for all \(\lambda_i \geq d/m \) and fold back to tensor \(\Theta \).

Figure 1: Right triangular matrices show the true signal and left ones show the estimated ones. Simulation 1 follows monotonic degree assumption while Simulation 2 does not.

<table>
<thead>
<tr>
<th>Convergence rate (power of (d^{-1}))</th>
<th>Optimal complexity</th>
<th>SBA</th>
<th>SAS</th>
<th>Spectral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial complexity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Comparison of SBA, SAS, and Spectral method for \(m = 1 \) and \(m > 2 \).

References

IFDS Summer School 2021

The research was supported in part by NSF DMS-1915978, NSF DMS-2023239, and Wisconsin Alumni Research Foundation.