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Main Problem

We consider permuted tensor model,

Y = Θ ◦ σ + E ,

where Y ∈ Rd×···×d is an observed data tensor, Θ is an unknown smooth

signal tensor, σ is an unknown permutation, and E ∈ Rd×···×d is a noise

tensor consisting of zero-mean sub-Gaussian entries.

Main problem: how to estimate Θ ◦ σ from the observed data tensor Y?

Limitations of low-rank assumption

Low-rank models assume

Θ ◦ σ =
r∑

`=1
λ`a

(`)
1 ⊗ · · · ⊗ a(`)

m ,

where λ` is a scalar and a
(`)
k ∈ Rd for all (k, `) ∈ [m] × [r].

However, low rank models are
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Θ = 1
1 + exp(−c (Z))

, where

Z = a⊗3 + b⊗3 + c⊗3.

Inadequate for special structures.

Θ = log(1 + Z), where

Z(i, j, k) = 1
d

max(i, j, k).

Ourmain assumption

Instead, we assume there exists f : [0, 1]m → R that satisfies

Representation : Θ(ω) = f (ω/d) for all ω ∈ [d]m,
α-Hölder continuity : |f (x) − f (y)| ≤ L‖x − y‖α

α for all x, y ∈ [0, 1]m,
where the norm ‖x‖p

p := ∑m
i=1 |xi|p for x ∈ Rm.

Stochastic block approximation (SBA) to smooth tensor

Lemma (Block approximation). For any k < d, there exists k-membership

function z : [d] → [k], and G ∈ Rk×···×k such that

1
dm

∑
ω∈[d]m

|(Θ ◦ σ)(ω) − G(z(ω))|2 ≤ m2L2

k2α
.

Based on this lemma and algorithms in [2], we find the optimizer,

(ẑ, Ĝ) = arg min
z : [d]→[k],G∈Rk×···×k

∑
ω∈[d]m

|Y(ω) − G(z(ω))|2 . (1)

We estimate the Θ ◦ σ by

(Θ̂ ◦ σ)(ω) = Ĝ(ẑ(ω)), for all ω ∈ [d]m. (2)

Theoretical guarantees

Theorem (Mean square error). Let Θ̂ be the estimator from (2) with the

choice of k = dd
m

m+2αe. Then,
1

dm
‖Θ̂ ◦ σ − Θ ◦ σ‖2

F . d− 2mα
m+2α︸ ︷︷ ︸

Nonparametric rate

+ log d

dm−1︸ ︷︷ ︸
Clustering rate

, (3)

with high probability.

Remark: Depending on constants m and α, convergence rate becomes

RHS of (3) �


d− 2α

1+α m = 2, α ∈ (0, 1),
log d/d m = 2, α = 1,

d− 2mα
m+2α m > 2.

Though SBA guarantees fast convergence rate, polynomial complexity

algorithms for (1) are unknown.

Ongoing work: polynomial algorithms

Sort-And-Smooth (SAS) method extended from [1]

Under the monotonically increasing degree assumption on signal Θ,
1

dm−1

m∑
`=2

∑
i`∈[d]

Θ(i, i2, . . . , im) >
1

dm−1

m∑
`=2

∑
i`∈[d]

Θ(j, i2, . . . , im), for all i > j.

Step 1 (sorting): Find σ̂ so that the degree of Y ◦ σ̂−1 is increasing.

Step 2 (smoothing): Estimate signal matrix Θ̂ = Blockk(Y ◦ σ̂−1), where
Blockk(Θ) := Average{Θ(ω) : bωk/de = dω′k/de}, for all ω′ ∈ [d]m.

Spectral method extended from [3]

Step 1 (Unfolding): Unfold Y into Mat(Y) ∈ Rdbm/2c×ddm/2e
.

Step 2 (SVD): Obtain SVD of Mat(Y) = ∑
i∈[dbm/2c] λiuiv

T
i .

Step 3 (Thresholding): Obtain Mat(Θ̂) = ∑
i∈[dbm/2c] λiuiv

T
i 1{λi ≥ d

dm/2e
2 } and

fold back to tensor Θ̂.
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SAS Spectral

Figure 1. Right triangular matrices show the true signal and left ones show the estimated

ones. Simulation 1 follows monotonic degree assumption while Simulation 2 does not.

SBA SAS Spectral

Convergence rate (power of d−1) 2m
m+2

2m
m+2

∗ 4bm/2c
2bm/2c+4

Polynomial complexity No Yes Yes
∗ Restricted model

Table 1. Comparison of SBA, SAS, and Spectral method for α = 1 and m > 2.

Remark: as m increases, convergence rates of both algorithms get closer

to that of SBA.
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