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Main problems: the signal plus noise model
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Main problems: the signal plus noise model
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We focus on the two problems
1. Signal tensor estimation: How to estimate the signal tensor ©7

2. Complexity of tensor completion: How many observed tensor entries do we need?
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Our contribution
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Special case with full observation:

Model Our rate* (power of d)  Previous results
Tensor block model —(K-1)/2 «a = 0o; minimax rate in Wang and Zeng (2019)
. . e « = 1; conjecture on the optimality; matrix rate
Single index model (K=1)/3 d=1/3 improves O(d~1/4) by Ganti et al. (2017)
Generalized linear model —(K-1)/3 a = 1; close to parametric rate in Lee and Wang (2020)

. faster rate as « increases; extended matrix case
—(K = 1) min(325 A 1) o

a-smooth Fsg(r) a2 in Lee et al. (2021)
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Inadequacies of low-rank models

® Low-rank models (Anandkumar et al., 2014; Montanari and Sun, 2018; Cai et al.,

2019).
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Inadequacies of low-rank models

® Sensitivity to order-preserving transformation
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Inadequacies of low-rank models

® Sensitivity to order-preserving transformation @ |nadequacy for special structures.
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Z=a" 4+ b3 4 ¢ Z(ij, k) = g max(i,j, k). .
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Why sign matters?

For a bounded tensor © € [—1,1]d x> dk,

@Nszgn(@—ﬂ Where?-[:{—1....,—/}/,0,/}/,...,1}.

TEH

® Sign tensors are invariant to order-preserving transformation.
® More flexible signal tensors are allowed by using sign tensor series representation.

® In noisy case, we estimate sgn(© — 7) from the tensor data sgn() — ).
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Sign rank
® Key idea: we use a local notion of low-rankness to allow a richer family of signal
tensors.
® Two tensors are sign equivalent denoted © ~ ©’ if sgn(©) = sgn(©'), where

1 if ©, >0,
—1 otherwise.

[sgn(©)]., = {

® Sign rank is defined as

srank(©) = min{rank(®’): @' ~ 0,0’ € Rdlxmxdx}.
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Sign rank

® Key idea: we use a local notion of low-rankness to allow a richer family of signal
tensors.

® Two tensors are sign equivalent denoted © ~ ©’ if sgn(©) = sgn(©'), where

[sgn(©)]w = {1 if ©, >0,

—1 otherwise.

® Sign rank is defined as

srank(©) = min{rank(®’): @' ~ 0,0’ € Rdlxmxdx}.

k(©) = d
e = ,  sgn(0) = _, ronk(®)
B 2

srank(©) =
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Sign representable tensors

Sign representable tensors

A tensor © is called r-sign representable if the tensor (© — 7) has sign rank bounded
by r for all m € [-1,1].

® Most existing structure tensors belong to sign representable family:
® | ow-rank CP tensors, Tucker tensors, stochastic block models.
® High-rank tensors from GLM, single index models,
® Tensors with repeating patterns, e.g. ©(i, ..., ix) = log(l 4+ max(i,...,ik)) is
2-sign representable.
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Sign representable tensors

Sign representable tensors

A tensor © is called r-sign representable if the tensor (© — 7) has sign rank bounded
by r for all m € [-1,1].

® Most existing structure tensors belong to sign representable family:
® | ow-rank CP tensors, Tucker tensors, stochastic block models.
® High-rank tensors from GLM, single index models,
® Tensors with repeating patterns, e.g. ©(i, ..., ix) = log(l 4+ max(i,...,ik)) is
2-sign representable.
® |nstead of the classical low-rank assumption, we propose the sign representable
tensor family

© € Pegn(r) :={O: srank(© — ) < r for all 7 € [-1,1]}.
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Our solution: sign signal helps!
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Our solution: sign signal helps!
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Step 1: representation

representation

column index

- 015
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row index @ missing value

real-valued input tensor

noisy and incomplete observation

® We observe a noisy incomplete tensor Vg € [—1,1]9X %9 with observed index
set Q C [dl] X oo X [dK]
® \We dichotomize the data into a series of sign tensors:

1 1
{sgn(Va — 7)}ren, where H = {—1, ce —H,O, ITIRREE 1} .
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Step 2: weighted classification

row index

weighted classification
>

e i
~~~~~ .
real-valued input tensor a series of binary tensors with low sign ranks

® We estimate sgn(© — 7) through sgn(Yq — 7) via weighted classification.
® Objective function of weighted classification is

1
L(Z, Yo —7) = = > |¥(w) = 7| x [sgn(Z(w)) — sgn(V(w) — )|
|Q| we we‘ight classific;;ion loss ’
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Step 2: weighed classification
row index
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weighted classification

real-valued input tensor

a series of binary tensors with low sign ranks
arg min

® If © € Psgn(r) is a-smooth (o > 0), we have a unique optimizer such that
sgn(© — ) =

Ey,L(Z, Vo — 7).
Z:rank(Z)<r
® \We obtain a series of optimizers {Z }rey as
Z.= argmin L(Z,Vq— 7).
Z: rank(Z2)<r
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Step 3: aggregation

aggregation

column index

015
|- 005

row index

a series of binary tensors with low sign ranks recovered high-rank signals

® From a series of optimizers {ﬁw}ﬁey in the weighted classification, we obtain the
tensor estimate

A 1 ~
©= m Z sgnZW.
TeEH
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|dentification for sign tensor estimation
® \We quantify difficulty of the problem using CDF G(7) = Pyen[©(w) < 7.

a-smoothness

® Partition [—1,1] = N UN€, where N¢ consists of levels whose pseudo density
(histogram with bin size As = d=X) is uniformly bounded, and A/ otherwise.

® G(m) is globally a-smooth in that for all 7 € N¢,

G t)— G(m—t
sup (W+) (W )<c,

As<t<p(mN) te -

for two constants «, ¢ > 0, where p(7,N') = minpep |m — 7’| + As.

a Wi=0a=1 b WNl=r a=00
|
| ;
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Estimation error
For two tensor ©1, ©5, define MAE(@l, @2) = Ewen\@l(w) — eg(w)‘

Estimation error (L. and Wang 2021)
Suppose © € Pgn(r) is a-smooth with bounded |V, and di = - -- = dk = d.
1. (Sign tensor estimation) For all 7 € N'¢, with high probability,

5 dr\ =2
MAE(sgnZ,,sgn(© — 7)) <* <|Q|) .

2. (Tensor estimation)

. dr\ a2 1 Hdr dr \™n(5%23)
MAE(®,©) <* <> v oo e <> .
€] LY €2
Error inherited from sign estimation Bias  Variance

*log term suppressed, **H = (|Q|/dr)*/?

® Tensor estimation is generally no better than sign tensor estimation.

® See paper for general case that allows unbounded |[N| and sub-Gaussian noise.
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Data application: Brain connectivity

® The human brain connectivity dataset consists of 68
brain regions for 114 individuals with their 1Q scores.

® Data tensor ) € {0,1}68x68x114

brain nodes

Brain connectivity
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Data application: Brain connectivity

brain nodes

Brain connectivity

® \We examine the estimated signal tensor 6.

Top 10 brain edges based on regression analysis
show inter-hemisphere connections.

® The human brain connectivity dataset consists of 68
brain regions for 114 individuals with their 1Q scores.

® Data tensor ) € {0,1}68x68x114
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Data application: NIPS

Rl — ® The NIPS dataset consists of word occurrence counts in
' papers published from 1987 to 2003.

® Data tensor ) € R100x200x17

authors

NIPS data
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Data application: NIPS

uords ® The NIPS dataset consists of word occurrence counts in
£ papers published from 1987 to 2003.
. ® Data tensor ) € R100x200x17
NIPS data
® \We examine the estimated signal tensor ©. P

® Most frequent words are consistent with the

active topics

® Strong heterogeneity among word occurrences
across authors and years.

® Similar word patterns (B. Scholkopf and A.

Smola).

top word

neural(1.95)
learning(1.48)

training(1.22).
network(1.21),
algorithm(1.17)
parameter(1.16)
space(1.15)

top author

18/21



Data application: Brain connectivity + NIPS

MRN-114 brain connectivity dataset

Method r=3 r==6 r=9 r=12 r=15
NonparaT (Ours) 0.18(0.001) | 0.14(0.001) | 0.12(0.001) | 0.12(0.001) | 0.11(0.001)
Low-rank CPT 0.26(0.006) | 0.23(0.006) | 0.22(0.004) | 0.21(0.006) | 0.20(0.008)

NIPS word occurrence dataset

Method r=3 r==6 r=9 r=12 r=15
NonparaT (Ours) 0.18(0.002) | 0.16(0.002) | 0.15(0.001) | 0.14(0.001) | 0.13(0.001)
Low-rank CPT 0.22(0.004) | 0.20(0.007) | 0.19(0.007) | 0.17(0.007) | 0.17(0.007)

Naive imputation (Baseline) 0.32(.001)

Table: MAE comparison in the brain data and NIPS data on 5-folded cross-validation

® Qur method outperforms the low-rank CP method in applications.



Summary

® \We have developed a completion method that address both low- and
high-rankness based on sign series representation.

® [Estimation error rates and sample complexities are established.

® Qur approach has good interpretation and prediction performance in both
simulations and data applications.

® Preprint: https://arxiv.org/abs/2102.00384
® Software: https://cran.r-project.org/web/packages/TensorComplete/index.html
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