Smooth tensor estimation with unknown permutation

Chanwoo Lee! and Miaoyan Wang?

Department of Statistics, University of Wisconsin - Madison

NeurlPS workshop on Quantum Tensor Networks in Machine Learning

1 . 2 . .
chanwoo.lee@wisc.edu “miaoyan.wang@wisc.edu

1/8



Main problems: the permuted signal plus noise model
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® Question: How to estimate the permuted signal tensor © o 7?7
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® Question: How to estimate the permuted signal tensor © o 7?7

® \We assume that there exists a multivariate function f: [0,1]™ — R underlying the
signal tensor, such that

i i . .
Ojypsim =1 (a, ce g) , forall i, ..., im € [d].
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Our contribution

Pananjady and Samworth (2020) Balasubramanian (2021) Li et al. (2019) Ours*
model structure monotonic Lipschitz Lipschitz a-smoothness
minimax lower bound Vv X X Vv
error rate for order-3 tensors d-? d-6/5 d-t d=2
polynomial algorithm Vv X V4 V4

We list here only the result for infinitely smooth order-3 tensors.

® \We develop a general permuted model for an arbitrary smoothness and order of
tensors with optimal rate.
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We list here only the result for infinitely smooth order-3 tensors.

® \We develop a general permuted model for an arbitrary smoothness and order of
tensors with optimal rate.
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® \We discover a phase transition phenomenon with

respect to the smoothness threshold needed for optimal
tensor recovery.

® We provide an efficient polynomial-time Borda count
algorithm that provably achieves optimal rate.
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Block-wise polynomial approximation

Observation Permuted observation

Block-wise
polynomial approximation

Estimated signal
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Block-wise polynomial approximation

Block-wise
polynomial approximation

Observation Permuted observation Estimated signal
® \We propose the least square estimation,

(OLSE #LSEy — arg min |V —0©or|g where,
O€#(k,0), me[d]—[d]

Bk, ) = {B € (RY2m: B(w) = > ace, Polypa(w)l{w € A} forall w € [d]'"}.
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Least-squares estimation error and its optimality
For two tensor ©1, ©,, define MSE(©1,0;) = dimuel — 0%

Least-squares estimation error (L. and Wang 2021)

Suppose that the generating function f is a-Holder smooth. For optimally chosen
polynomial degree ¢* and the number of groups k*,

_ 2ma m(m—l)

N m42a —_— —J
MSE(6E 0 215E @ 0o 1) < C|!o d+ when o < m(n%—l),
=T when a > 05—,

¢ = min([a], m(m —1)/2) — 1 and k* = [d™/(m+2min(a,¢"+1))]
® The error consists of the nonparametric error and permutation error.
® The dominating error depends on the smoothness and order of tensor.

® \We show that the least-square estimation is minimax rate-optimal.
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For two tensor ©1, Oy, define MSE(©1,0,) = (|01 — ©,]2.

Least-squares estimation error (L. and Wang 2021)

Suppose that the generating function f is a-Holder smooth. For optimally chosen
polynomial degree ¢* and the number of groups k*,

_ 2ma m(m—l)

N m42a —_— —J
MSE(6E 0 215E @ 0o 1) < C|!o d+ when o < m(n%—l),
=T when a > 05—,

2% = min([a],m(m —1)/2) — 1 and k* = [d™/(m+2min(a,£*+1))]
® The error consists of the nonparametric error and permutation error.
® The dominating error depends on the smoothness and order of tensor.
® \We show that the least-square estimation is minimax rate-optimal.

However, the algorithm for the least square estimation is computationally intractable.
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Polynomial-time algorithm: Borda count estimation

1. Sorting stage: Estimate a permutation 7B such that the permuted score

function 7 o (#B¢)~! is monotonically increasing, where

1
(1) = S > V(iiay . yim).

(i2,...,im)€[d]'"*1

2. Polynomial approximation stage: Estimate the degree-{ polynomial block tensor

6BC = argmin ||V o (RBC)™L — 9||f.
OcA(k,0)
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Polynomial-time algorithm: Borda count estimation

1. Sorting stage: Estimate a permutation 7B such that the permuted score

function 7 o (#B¢)~! is monotonically increasing, where

1
(1) = S > V(iiay . yim).

(I'2,...,I'm)€[d]m71

2. Polynomial approximation stage: Estimate the degree-¢ polynomial block tensor

6BC = argmin ||V o (RBC)™L — 9||f.
OcB(k,0)
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Borda count algorithm provably achieves optimal rate under monotonicity assumptions
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Simulation results

Model 1

Borda Count Spectral
(5.4 x 107%) (3.1x1073) (5.3x107%)

Observation Model 3 Borda Count Spectral LSE
(3.6 x 1071) (6.5%x107%) (1.1x107%)

Borda Count Spectral _ LSE
(2.5 x 107%) (7.5 x 107%) (3.6 x 107%)
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Thank you!
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